


TECHNICAL REPORT STANDARD TITLE PAGE

1. REPORT NO. ) 2. GOVERMNMENT ACCESSION HO. 3. RECIPIENT’S CATALOG NO.
NASA CR-2618
4, TITLE AND SUBTITLE ) $. REPORT DATE
. October 1975
Gravitational Forces and Moments on Spacecraft 6. PERFORMING ORGANIZATION C(DE
Mi51
7. AUTHOR(S) 8, PERFORMING ORGANIZATION REPORT #
T. R. Kane and P. W. Likins
9. PERFORMING ORGANIZATION NAME AMD ADDRESS 10. WORK UNIT, NO.
School of Engineering and Applied Science
University of California, Los Angeles 11, CONTRACT OR GRANT NO.
California 90024 NAS8-28358, Mod 6
13. TYPE OF REPORY & PERIOD COVERED
- . : :
12, SPONSORING AGENCY NAME AND ADDRESS CONTRACTOR
National Aeronautics and Space Administration
Washington, D. C. 20546 14, SPONSORING AGENCY CODE

15. SUPPLEMENTARY NOTES

18, ABSTRACT

The solution of many problems of attitude dynamics of spacecraft requires a thorough
understanding of gravitational forces and moments. This understanding can be
communicated most directly in terms of arguments based on Newton's law of
gravitation, employing the methods of Newtonian (vectorial) mechanics, and with
minimal recourse to the classical concepts of potential theory. In this report the
necessary ideas are developed and relationships are established to permit the
representation of gravitational forces and moments exerted on bodies in space by
other bodies, both in terms involving the mass distribution properties of the bodies,
and in terms of vector operations on those scalar functions classically described as
gravitational potential functions.

17. KEY WORDS \ 18, _DISTRIBUTION STATEMENT

Unclasgified-Unlimited

Cat 10
19. SECURITY CLASSIF, (of this reparty 20, SECURITY CLASSIF, (of this page) Z21. NO. OF PAGES | 22. PRICE
Unclassified Unclassified 146 $5.75

TFor sale by the Mational Technical Information Service, Springfield, Virginia 22161

For sale by the Superintendent of Documents, U.S, Government
Printing Office, Washington, D.C. 20402






PREFACE

This volume is the second in a series of reports being prepared by
Professors Kane and Likins on various aspects of spacecraft attitude
dynamics. The first volume, "Kinematics of Rigid Bodies in Spaceflight,"
was presentéd as Technical Report No. 204 of the Stanford University '
Department of Applied Mechanics, published in May of 1971. Subsequent
volumes will deal with non-gravitational forces and moments on space-
craft, with the attitude dynamics of rigid spacecraft, and with the
attitude dynamics of nonrigid spacecraft. In time, the series will be
assembled as a book intended both for classroom use and as a reference
for practicing engineers.

Most of the development herein is the unsponsored enterprise of the
authors, forming the basis for the spacecraft attitude dynamics studies
of Contract NAS8-28358.

The present volume, "Gravitational Forces and Moments on Spacecraft,"
furnishes a unique perspective on a subject that was developed in its
classical form long before the era of modern space exploration. The
development provided here differs from the traditional presentation of
the subject by focusing attention on applications to problems of
attitude dynamics of the spacecraft. In the opinion of the authors,
understanding of gravitational forces and moments required for the
solution of problems of attitude dynamics can be communicated most
directly in terms of arguments based on Newton's law of gravitation,
presented by employing the methods of Newtonian (vectorial) mechanics,
with minimal recourse to the classical concepts of potential theory.
Accordingly, in this report, the necessary ideas are developed and
relationships are established to permit the representation of gravitational
forces and moments exerted on bodies in space by other bodies, both in
terms involving the mass distribution properties of the bodies, and in
terms of vector operations on scalar functions classically described as
gravitational potential functions.
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2.1

2.1 Gravitational interaction of two particles

A particle P of mass m experiences in the presence of a particle‘§ of
mass m a force F acting along the line joining P andif, directed from P
toward P, and having a magnitude proportional to the product of m and m”
and inversely proportional to the square of the distance between P and P.
Hence, if p is the position vector of P relative to P (see Fig. 2.1.1),

%
the force F can be expressed as

)-3/2

F = —dﬁﬁg(gz (1)
where G is the universal gravitational constant, given numerically by+
G % 6.6732 x 10" m?kg 2,
The force E.experienced by.f in the presence of P is
F=-F &

in conformity with Newton's third law.

Example: If m is the mass of the earth, m the mass of the moon, and p
the vector from the mass center of the earth to the mass center of the moon,
and if the numerical values of m, m and |2] are given approximately by

A 8

@ = 5.97 x 10%%kg, m = 7.34 x 10%%kg and |p| = 3.844 x 10°m, what 1s the

magnitude of the force F exerted on the moon by the earth?
As Eq. (1) applies to particles, it can be used for the purpose at hand
only with the supposition that the earth and moon can be replaced by

*
The superscript 2 on a vector indicates scalar multiplication of the vector

with itself, 1.e., squaring the magnitude of the vector.

+E.A. Mechtly, "The International System of Units: Physical Constants and

Conversion Factors,” NASA SP-7012, Revised, 1969.
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2.1
particles situated at their mass centers and having masses m and m,

respectively. In that case,

lEl = cml|p|pH3/?
(1)

L1

(3.98602 x 10 %%k ™)) (7.34 x 10%%kg) (3.844 x 10°m)~2

[ ]

1.98 x 1020 § 3

The validity of this supposition is examined in Sec. 2.4.



2.2

2.2 Force exerted on a body by a particle

The system of gravitational forces exerted by a particle P of mass m
on the particles of a (not necessarily rigid) body B is equivqlent.to a single
force F whose line of action passes through 5; but not necessarily through
the mass center B* éf B. 1If B consists of particles Pl’ coss P.. Of masses

N

Mys coey Moy and 1f Bys sees Py are the position vectors of Pl’ eney PN

relative to P (see Fig. 2.2.1), then F is given by

-3/2

N
E=-G 2 mp D (1)

im=]l

whereas, if B 1s a continuocus distribution of matter, and p is the mass
density of B at a generic point P of B, p is the position vector of P
relative to P (see Fig. 2.2.2), and dt is the length, area, or volume of a
differential element of the figure (curve, surface, or solid) occupied by B,

then F can be expressed as

F = -GE/;_(RZ)-B/ZpdT . (2)

Once the line of action of the force F in Eq. (1) or Eq. (2) has been
established, it is always possible to locate a point B' on this line such
that the force exerted by P on a particle whose mass is equal to that of B
and which is placed at B' is equal to the force F exerted on B by P. The

1] ——
point B , called the center of gravity of B for the attracting particle P,

1
does not in general coincide with the mass center of B; and 1f R 1is the

—
distance from P to the center of gravity B , then
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P(m)

Figure 2.2.1
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vl \1/2
2 (5 ®

where F is obtained from Eq. (1) or Eq. (2), and m is the mass of B.
Derivations: The force dF exerted by P on a differential element of

B at point P acts along the line joining P to P and is given by

aE = -GuppH) ™ 2pur
(2.1.1)

By definition, two systems of forces are equivalent if they have equal
resultants and equal moments about one point. Now, on the one hand, the
resultant of the system of forces exerted by P on all the differential

elements of B is given by

./‘;E - -Gafg(zz)-3/2pdT

and the moment of the system of forces abgut point -1; is equal to zero, because
dF, acting along the line joining P to F,- has zero moment about P. On the
other hand, the resultant; of a system of forces containing but one force F
is F, itself, and the moment of this system about point P is zero if the
line of action of F passes through P. Hence, if F is given by Eq. (2) and
acts along a line of action passing through P, thén F is equivalent to the
system of forces exerted by P on all differential elements of B.

A parallel proof may be conmstructed for Eq. (1), which replaces Eq. (2)
when B ct;nsists of a finite number of particles.

The truth of the assertion that the line of action of the force F does

. * .
not necessarily pass through B 1s most easily demonstrated by an example;



2.2

and Eq. (3) follows directly from the definition of RE and Ea. (2»1.1).

Example: A uniform thin rod B of length L and mass m is subjected to
the gravitational attraction of a particle P of mass m as shown in Fig.
2.2.3. The system of forces exerted by P on the particles comprising B
is to be replaced with a force F whose line of action passes through P,
and an expressionris to be found for the distance R' between P and the
center of gravity B' of B for P.

If the rod is regarded as matter distributed along a straight line

segment, then the position vector p of a generic point P of the rod relative

to P can be expressed as

R=yb -aby - )
TR

where b, and b, are unit vectors directed as shown in Fig. 2.2.3 and where

y varies from 0 to.L. The mass density p of B at P is then equal to m/L,
and a differential element of B has a length dy. Hence the force F,

reéolved into compongn#é paraliél‘to bi and 22, can be written

Cinae

’F = F.b. + F.b = -Gm ZEIL( b ;M;£J§¥;2@i“’%):§/%w$'d (5)
2751 T 2 2 T ARy Ty e g @y
(2) 0 .
and integration yields
Iy ;yqip,'
_ 241/2
F, = -Gmm | {1 + &5 -8l faqa? + 13)1/2 (6)
1 LZ L

F, = Gah/a(gz + L2)1/2 €))

de
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2.2

From Fig. 2.2.3 it can be seen that the distance € between the mass
%
center B of B and the interscetion of B with the line of action of F is

related to Fl and F2 by

L
F, [L¢
1 '(2 )
- f; - 2 (8)
oY
€ 1, 2f 1 a [( a? )1/2 a]
L (8) 2 LFZ (6,7) 2 L L2 L

The ratio €/L from Eq. (9) is plotted vs. a/L in Fig. 2.2.4. Since two
bodies cannot occupy the same point in space, the limiting case a/L = 0 must
be excluded from consideration. However, as this limit is approached, the
ratio €/L approaches the value 1/2 and the line of action of F approaches
coincidence with B. For any finite value of a/L, Fig. 2.2.4 indicates that
the line of action F cannot pass through both P and B*.

The distance R' from P to the center of gravity B' of B for P is given by

1/2

9

o } (aL);/Z
©:7) fa11-2a48y 7L/ 22/
L

- Gmm
2,.2.1/2
(3) (F1+F2)

It is clear from this example that the location of the center of gravity
)
B is not in general a property of body B alone, but depends also on the

position of the attracting particle P.

10
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2.3 Force exerted on a small body by a particle

When a body B is subjected to the gravitational attraction of a particle
P removed so far from the mass center B* of B that the largest distance from
B* to any point P of B is considerably smaller than the distance R between
P and B*, a useful form of the expression for the force F given in Eq. (2.2V.2)
can be found as follows: Replace p with the sum of R, the position vector
of B* relative to -IT, and r, the position vector of P relative to B* (see Fig.

2.3.1), and then expand the integrand in ascending powers of | T l /R to obtain

G ~ (1
F=- ‘“‘;‘(31+Z_*f_( ’) w
R i1=2
(1) : th =
where f is a collection of terms of i~ degree in h:_| /R, m and m are the

masses of B and —f, G is the universal gravitational constant, and 2 is a

— *
unit vector directed from P toward B , so that
R = Ra; 2
, (2)
In particular, f is given by

) 1 3 i
£ = ;RTZ_ {E [exr (D) - 551'}.'51]51 + 3L ?;1} (3)

#
where I is the inertia dyadic of B for B , and tr(I) denotes a scalar in-
variant of I, called the trace of I and defined in terms of any mutually

orthogonal unit vectors ;5 By, and n, as

tr () A El'l'ﬁl + E.z'l'EZ + P.a'l'ﬂ:; (4)

12
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Figure 2.3 1

13



2.3

Eq. (1) suggests two approximations which we shall find useful in the

sequel:
E;./.\F_é-__cmgil
R
and
F-—':E'A—g——(a +f(2))

(2)

Two expressions for £

to the one given in Eq. (3) are obtained as follows:

(5)

(6)

which sometimes furnish convenient alternatives

Introduce unit vectors

a, and a, such that 35 355 and 2, form a dextral, orthogonal set, and let

b

*
for B and also forming a dextral orthogonal set.

as
Ijk ééj'l._a_k (jsk = 1,2,3)
and
I.Ab,°I°b j = 1,2,3
j =_dj .___.j (J sk )
Finally, let
Cij Aii.hj (iaj = 1:293)

Then gﬁ2> may be written either as

14

by b,s and 23 be unit vectors respectively parallel to principal axes of B

Next, define I,. and I

ik 3

(7)

(8)

9



2.3
@ _ 3L
£ 2 [2(122 * I3z - 20yp)ay + Iya, + I31-‘13] (10)
QY 88

) __3 }1 2 2 2
£ 2 { 511, (1-3C1;) + I,(1-3C3,) + I,(1-3C ) ]a;

+ [IlC + I,C,,C

21011 * I3C25015 * I3C54Cq5lay

+ [1)C37Cyy + IC35C5 + I3C55C5la an

The relative simplicity of Eq. (10) is a result of the use of time-dependent
moments and products of inertia [see Eq. (7)]. By way of contrast, the
principal moments of inertia appearing in Eq. (11) are constants, and the
orientation of B relative to 85, 89, and a4 now comes into evidence through
the direction cosines relating the two sets of unit vectors 8, 85, 34 and
by» by, By
Derivations: Replacing p in Eq. (2.2.2) by R + r (see Fig. 2.3.1)

provides
F=-af@®+r) @&+ mer + 2 2par (12)
In terms of the normalized position vector q defined by

44/ (13)

and the unit vector a, satisfying

15



2.3

a

a8, = BR/R (14)

(2)

the force becomes

F = - —ngl-ﬁil +q 1+ 2a,°q + _gz)—3/2pd‘r (15)
(12,13,14) R -
Application of the binomial series expansion

(l-l*x)n =1+ nx + %‘T n(n--l)x2 + %T n‘n-l) (n—2)x3 + .. (16)
(valid for x < 1) to the exponentiated quantity then yields, for

2a;0q + &2 < 1, the expression

Gm 3 2 15 2
(15,16) R2 1 2 =1 2 =1
+ gl - 3a,+g + ...]}pdt Qan

where dots represent terms of degree three and higher in | gl . This expression
*
can be simplified by taking advantage of the fact that B is the mass center

of B, for this means that

f_qu'r =0 (18)

so that

Gm 3 _.2_15 2
= arae ;ffiﬁl - 224 +3728(@°9"- 393, °gledT + ... (19)
’

16



2.3

Furthermore, replacing q with r/R and observing that

/pd‘r = m (20).

one arrives at

F = - '&2; a + 99% [i]_ E_zpd't - 5?;1&1' ‘E_Epdr'il
(19,20) R 2R

+ Zf_r_l_:_pd'r'g,_l] + ... (21)

The integrals appearing in Eq. (2) can be related to inertia propefties

*
of B by introducing two quantities: the inertia dyadic I of B for B , de-

fined as

1A fw? - rr)par (22)

where U denotes the unit dyadic, that is, a dyadic such that, for any vector

v, v°U = U*v = v; and the trace of I, defined in Eq. (4). For it follows

from Eqs. (22) and (4) that

tr(D) = /I3£2 - (my°rren; + nycreen, + ng°rren)lpdr
=ﬁ3£2 - _r_z)pd'r = Zﬁ_zpdT (23)

so that

/;-_Zpdr = %_—tr(_];) (24)
(23)

17



2.3

and
2 tr(_I_)
fzspd'f = gfsodr-; = U——-1 (25)
(22) (24)
Consequently
Gum 3Cm 3Gm
F = - =5 a, - =7 [tr(I) - 5a,°I*a,]la, - =5 I°a, + ... (26)
(21,24,25) RZTL gt T TLEAALT G4 =3

and the equivalence of Eqs. (1) and (26) becomes apparent after using Eq. (3)

and recognizing that the three dots in Eq. (26) stand for terms of degree

three and higher in I_r_ | /R, these terms being represented in Eq. (1) by £ (1

for i> 3.

Referring to Eq. (7), one can express I as

+ 1I.,.a

1 122187 * 1133;34

= 111313

+ 151898) + 199358, + 1553534

+ I + I +1I,.,a,a

318331 T 1328387 T 1338334

from which it follows that

1ea

____l-—-I a, +I,.a, +1

11231 T f2122 T 13183

Substituting from this equation into Eq. (3) and noting that

+1I

er(D) Ijp ¥ I+ 133

“%,7)

18



2.3

while

a,*I#a, = 1
1 1 ) 11
one arrives at Eq. (10).
Finally, Eq. (11) may be obtained from Eq. (10) after obgerving that,
in view of Eq. (8) and of the assumption that b5 by, and 2_3 are parallel

*
to principal axes of inertia of B for B , I can be expressed as

L= I)byby + Ipbyby + I3bsby

so that

R, 118)'byby "8y + Tp3)'bobyay + 133, °bgbsray

2 2 2
I,Cyy + 15Cq9 + I3Cy4

€))

and, similarly,

Iyp = 13693051 * I5Cp501 9 * 15C9305

and so forth. Substitution into Eq. (10) then yields Eq. (11) if one makes

_ 2 2 2 -
use of the fact that c:ll + C12 + C:LB 1l fori=1, 2, 3.

Example: An approximate expression is required for the force F exerted
on a uniform thin rod B of mass m and length L by a particle P of mass m

located relative to B as shown in Fig. 2.3.2, with R >> L. Body B is to be

19
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2N

3]

af

G

q

Z'£Z ounbly

20



2.3

idealized as matter distributed uniformly along a straight line
segment.
3 @) "
When £, £*77, etc. are omitted, Eq. (6) provides the required ap
proximate force expression. If b;s by, and b,y are introduced as a set of
dextral, orthogonal unit vectors, with 91 parallel to the rod axis, then

%
the inertia dyadic I of B for B 1s given by

2
mL”
1 =55 (byb, + byby) (27)

which, when substitutgd into Eq. (3), introduces into the force expression
the dot products _112 2 and b3 2. To evaluate these, let { be the angle

between El and 295 and note that only these two unit vectors have physical
significance inherent to the problem, so that 1_3_2, _133, a, and a, are defined

arbitrarily, as shown in Fig. 2,.3.2. It follows that

bya; = -sin ¥ (28)
byca, =0 (29)
and
2 2 2 ’
(2) 1 [3 (mL 5mL 2 ) 3mL ]
£ = 5 - sin® Yla, - sin ¥ b, (30)
(3) 182 21 6 12 1 12 2

so that, after using

by =a, cos ¥ - g, sin (31)

21



2.3

and omitting £ﬁ3), §f4), etc., one obtains

~

~ — 2 2
F = F = - -g%[_a_l[l + L‘-——z— (2-3sin2w) - 2, L_?: sinZw} (32)
(6) (6,30,31) R 8R 8R

This result could have been obtained as easily from Eqs. (1), (6), and

(11), with the substitution of direction cosines available from Fig. 2.3.2 as

C11 C12 C13 cosyY -siny O
021 sz 023 1 = siny cosy O
C C Cc 0 0 1

31 32 33

2
mL
and with Il 0, IZ 13’ 37 -

® —
When the rod is aligned with the line joining its mass center B to P,

so that ¥ = 0, the force becomes

oK

— 2
- -9#'%(1+-1—‘—5)51 (33)
(32) R 4R

and when the rod is perpendicular to this line, so that § = m/2 rad.,

2

- 2
F o= - g‘l"%(l - 1‘—5)3_1 (34)
(32) R 8R
#*
Since in these special cases lines passing through B and paralleling a5
*
a,, and 8, are principal axes of B for B, Egs. (33) and (34) could have

been obtained most directly by using Eq. (10), with I, = 131 = 0 and for
Y =0,

22



2.3
whereas, for Y = /2,

2 2
0, I,,=-—%

I ot

11"z 0 T2

Note that the term (GEhL2/8R4)sin2m§2 in Eq. (32) represents a force
directed normal to the line joining P to B*. Such force components cause
bodies to move in orbits differing from the Keplerian orbits associated
with particles; but this effect is so small that it can generally be ignored
even in high precision orbital calculations.

Certain differences between the Example in Sec. 2.2 and the present

example should be mnoted carefully. For instance, Eq. (32) is valid only

12

when L-g_'h_ + =5 < 1 , as required for the underlying series expansion
R-1-1 4R2

in Eq. (17), whereas Eqs. (2.2.5)-(2.2.7) in the Example in Sec. 2.2 are
not subject to any such restriction; and the line through P and normal to
B passes through the end of B in Fig. 2.2.3, but need not do so im Fig.
2.3.2. For the special case in which P in Fig. 2.3.2 lies on the normal
to B passing through the end of B, as in Fig,. 2.2.3, cos ¥ and sin Y are
given by

cos P = L/2R (35)
and

1/2

sin ¥ = [1-(L/2R%)] (36)

but the form of Eq. (32) applicable to this case would not be obtained by

simply substituting these expressions into Eq. (32); rather, it is necessary

23
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to expand sin Y in ascending powers of L/R and then to drop terms of degree

three or higher after substituting into Eq. (32), which gives

- 2

~ Gmm L

Ea——-——-l--——g (37)
7‘( 8R2)1

24



2.4

2.4 TForce exerted on a small body by a small body

When the distance R between the mass centers B* and B of two (not
necessarily rigid) bodies B and B substantially exceeds the greatest dis-
tance in either body from the mass center to any point of the body, the
system of gravitational forces exerted on B by B has a resultant F which

can be expressed as

wwlé’l

(B fon Ry o
{=2 1=2 1=2 j=2

— * :
where 3 is a unit vector directed from B toward B , G is the universal
gravitational congtant, and m and m are the masses of B and —B', respectively,
1) th

and where f degree in |r|/R, -f_:(i) is a

is a collection of terms of 1
th - (13)

collection of terms of i~ degree in | r |/R, and f is a collection of

terms in the product (I_l_:_l/R)i(EI/R)j, with r and r respectively position

- *
vectors of generic points of B and B relative to B and 73* In particular,

and
—(2) 1193 T 1 1
£ a5 [-2' [tr(D-5a,Ivala; + 31'81] ”

where I and I are the inertia dyadics of B for Y and of B for i*,
respectively.

1f a, and ay are defined 80 as to establish a dextral, orthogonal set of
unit vectors a,, a,, 845 then £ @) and E(z) can be expressed in terms of

these unit vectors and the moments and products of inertia of B and B

25
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for axes paralleling 2y 8y, and a, and paseing through the mass centers

3
of the individual bodies. To this end, Ijk and —I-jk are defined as
Ijk _-A= Ej ..:.[.'Ek 3,k = 1,2,3) {4)
and
Loy L2, Ia 3,k = 1,2,3) (5)

after which £ @ and z(z) may be written

®_ 21 |
L= zl2 (Typ + I33 = 2Ijy)a; + 18, + I315‘-3] (6)
and
. 3 [,1. T +T,, - o1 T T
e R M L AN I31-‘13] ™

Alternatively, f 2 and E(Z) | can be expressed in terms of principal
moments of inertia of B for B* and of B for 3* To accomplish this, two
sets of dextral, orthogonal unit vectors, :Ql, b,s _13_3 and El’ EZ’ -EB’ para-
lleling principal axes of B for B* and of B for _B*, respeci:ively, are

introduced, and.Ij, -fj’ Cij’ and Eij are defined as
I, = by-I'b, (4 =1,2,3) (8)

‘I, 4 =1,2,3 6

26



2.4

and

Cyy A a;°b (1,3 = 1,2,3) (10)
<y, _A__ai-gj (1, = 1,2,3) (11)
Thus one obtains
£® .3

2 [, (1- 3c11) +1I (1 3c ) +1, (1- 3013)]a

+ [1Cp1Cpq + I,C55045 + I3Cp5C 4]0,

+ [1;C39Cqq + 1,045,015 + 15043042, (12)
and
72 .3 117 (1-3c ) +1,0- 3c P+, (1—3c )1
£ =212 13
TR
+ [1)61;Cyp + T,C,yCp5 + 5640 13]al
+ [T;83)Chy + TyCq0Cpy + T5C55C 5la (13)
A useful approximation of F in Eq. (1) may be obtained by defining i
such that

PR p-E + 2@+ F) (14)
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2.4

with £(2) and _?_(2) substituted from either Bgs. (2) and (3), or Eqs. (6)
and (7), or Egs. (12) and (13).

Derivations: To establish the validity of Eqs. (1), (2), (3), (6), (7,
(12), and (13), expressions given in Sec. 2.3 may be used to represent the
force exerted on B by a differential element of B located at a generic
point P of B (see Fig. 2.4.1), and the total force F applied to B by B
can then be obtained by integrating ovér the figure of B. Specifically,
if R is the distance between P and B*, §_1 is a unit vector directed from
P toward B*, D is the mass density of B at F, and dT is the volume of a
differential element of B at P, then, from Eqs. (2.3.1)-(2.3.3) with R,

a, and m replaced by R, E—l’ and pdt, respectively,

Ga /= —]-'—- —3- - B3 oTeg. " .g. pdT
F=- Ez <§1 + = {2 [tr(_;_) 5a,°L 9—1}51 + 3T 51} + > pdt (15)

where the three dots represent terms of third or higher degree in | T | /R.
— * —_—
Now, if R denotes the position vector of B relative to P, and R the
— *
position vector of B relative to B , then (see Fig. 2.4.1)

,-3/2 _

- g@z) -3/2

- R+1) (&% + 2RT + Ez) (16)

Hence

F = OCnf@®+1) (_1_1_2 + 2R°x + }_'2)’3/2 pdt
(15,16) '

- f<::-4 {% [tr(D) - 5a,°I-ala; + 3;_-;1] + ..>Ed‘r’ an
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2.4

The first integral in this equation has precisely the same form as the
integral in Eq. (2.3.12). Consequently, proceeding as in that derivation,

one obtains results analogous to Eqs. (2.3.26), namely

(R + r)(R + 2R'r + r ) -3/2 odt

mm< {2 [tr (D) - Sal -g_ll_a_l + 31-'3_1 + l> (18)

where the three dots represent terms of third or higher degree in El /R. In
the second integral in Eq. (17), R and El may be replaced with R and a5
respectively, because every term in the integrand involves quantities of
second or higher degree in | T ] , 80 that no terms of interesf for the purposes
at hand are lost through this replacement; and, once the replacement has been
made, the portion of the integral displayed explicitly in Eq. (17) can be

evaluated readily. Thus, one obtains

Gmm
(17 18) < {2 [tr(D - 5a 'I'alla + 31.31 + ’

113 |
. ;‘?{_2_ [tr(_]';) - 5.%1._1_.2_1]9_,1 + 3;-51 + ...]> (19)

where the three dots now represent terms of third or higher dégree either in
|x|/R or 1n |T|/R or terms involving the product (|r| /R)i (z] /R)j, with
neither i nor j equal to unity, because r and E are drawn from the mass
centers of B and B. Eq. (1) now follows directly from Eq. (19) together

with the definitions in Eqs. (2) and (3).
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The relationship between Eqs.(2), (6), and (12) iz completely analogous
to that between Eqs. (2.3.3),~-(2.3.10), and (2.3.11); similarly, for Egas.
(3), (7), and (13). Hence, to establish the wvalidity of Eqs. (6), (7), and
(13), one can proceed exactly as in the corresponding derivations in
Sec. 2.3.

Example: An approximate expression is required for the force exerted
by a homogeneocus, oblate spheroid Bon a homogeneous rectangular parallepiped
B having the dimensions shown in Fig. 2.4.2. The approximation of F denoted
by i.in Eq. (14) is to be employed, and the three additive terms in-this
expression are to be compared with each other. For purposes of numerical
comparison, the values

6.38 x 10° m

el
0

= 6.36 x 10° m

wf
I

o0 =16 m
B<a

R = 6.66 = 4.2108 x 10’ m

are to be used. The system then roughly approximates that of the earth (B)
and a large, synchronous-altitude* artificial satellite (B).

Egs. (12) and (13) provide a convenient point of departure for the
required comparisons. The principal moments of inertia appearing in these

equations are given by

%
A satellite in circular orbit at synchronous altitude orbits the earth

every twenty-four hours, so that when in an equatorial orbit the satellite
remains above a fixed point on earth.
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.Figure 2.4.2
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m 2 2
I, =33 (@ +a9) (20)

12 = 13 = % (az + 32) 2

for the rectangular parallelepiped B, and by
= _m 2 =2
Il 5 @ +a") (22)
I,=I;=% (@ +8%) (23)

for the spheroid B. Later work is facilitated by eliminating B and B through

the introduction of the eccentricity € of the spheroid B with the substitution

B = 3% a-g% (24)

and a similar quantity € for body B with the substitution

2

82 = a2 (1-e?) (25)

(2)

The vector f then becomes

(2) o2 2 2 2

2 e 2 2
£ = =— {[3-3(c;, + C], + C7.) - o (2-3C7, - 3C7.)]a.
(12) 482 11 ¥ G2 v C3) -3 12 1313
.2
+ 2[C)1Cyq + CppC1 + Cpalyg = 57 (€505 + Cp3Cy3) ]2y
.2
+2[C4)Cpq + CgpCp9 + C35Cp5 = 5~ (C35Cp5 + C35C;3) 124} (26)
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2.4
or, after simplification by means of Eq. (1.2.14),

2.2
£(2)_ o'E

1 2
(26) 4R [2 (1-3C;y)a; + Cy3Cy139 + C31Cp32 3] (27)

By using Eq. (1.2.15), one can now express the magnitude I_f._(z)] of _f_(z) as

262
11 L (1 - 202 + f.cll)l/2 (28)
(27) 8
Similarly,
—3-
=(2) _ 3a’c [ -
LA Pl PR 31011—3-3] (29)
and
(2), _ 3% =2 1/2
|£%] === @ - 2c]; + 5011) (30)

10R

Fig. 2.4.3, showing a plot of the function (1 - 2x2 + 5x )1/ versus
x in the range -1 < x < 1, can be used to find extremals of Ig(z)l and

lz(z)l by substituting Ci1 and Ell for x. By reference to Eqs. (28) and (30)

it can thus be concluded that

2 2 2.2
ae” <|f(2)|<a§

(31)
4/5R> 4R
and
30L2€ (2) 3
=< |f | < o€ (32)

5/5R 5R2
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2.4

and substitution of the given numerical values then yilelds

(2)
| £ |max 5/5 a2’ .. 5/5(16)262

~ .o=9 2 -9
-~ ™ = = 10 “¢” < 10 (33)
E®|min 12 %% 12(6.38)%x102(.006)
and
—(2)
2% |max 22 -
T 3(.006?2 1074 (34)
‘_a_ll 5R 5(6.6)

Eq. (34) shows that, for a large, synchronous~altitude satellite of the
earth, the leading term in the series for F in Eq. (1) has a magnitude far
=(2)

exceeding that of £'°7, a vector which reflects the oblateness of the earth

through the presence of € in Eq. (30); and (see Eq. (33)) Igﬁz)l is much
smaller than even lfﬁz)l.

It is noteworthy that the tiny term'g(z) (see Eq. (27)) depends on
Cll’ 021, and C31’ and hence on the orientation of the satellite relative to
2y5> 8y, and 8,, whereas 212) (see Eq. (29)) involving»Eil, Eél’ and 551
depends on the orientation of the satellite's orbital plane relative to

the spheroid. For an equatorial orbit, 512) reduces to

7 e
3 T2 A
(29) 5R
and the addition of this vector to the term 3, in Eq. (14) is of little
*
conseqqenceq(see Eq. (34)). By way of contrast, if B moves in a non-
equatorial orbit, oblateness effects may be significant despite the fact
thatZE(z) is small in comparison with a;s because zﬂZ) then has components

~

pefbendicular to gi.
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2.5 Centrobaric bodies

As noted in Sec. 2.2, the center of gravity B. of a body B for an
attracting particle P does not in general coincide with the mass centsar
B* of B. However, there exist bodies for which the center of gravity and
center of mass necessarily. coincide. Such bodies are called centrobaric.*
Thus a body B of mass m is centrobaric if the force F exerted on B by

every particle P of mass m is given by

Gum
EF=- p)

a (1)
R -1

where G is the universal gravitational constant, R is the distance between
P and B*, and a; is a unit vector directed from P toward B*.

Ceptrobaric bodies céh be found in a variety of interesting shapes and
mags distributions (see Prob::Zf); but ‘all such bodies possess the followine
property: A centrobaric body has the game moment of inertia about every
line passing through its mass center. In other words, the inertia ellipsoid
of a centrobaric body for the mass center of the body is a sphere. Howe;er,
not every body possessing this property is centrobaric (see Prob. 2e).

Derivations: The existence of centrobaric bodies is most easily proven
by citing a specific case (see the Example, in which a solid sphere’is
shown to be centrobaric if its mass density at any goint is a function only
of the distance from the point to the center of the sphere).

To prove that a centrobaric body B has the same moment of inertia about
every line passiﬁg through its mass center B*, it is sufficient to show
*In the classgical 11terature, the term center of gravity is sometimes so de-

fined that only a centrobaric body has a center of gravity; then the center
of mass coincides with the center of gravity whenever the latter exists.
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that the quantity a,°I-a has a value independent of 2 where 1 is the
%
inertia dyadic of B for B . Now, taken in conjunction, Eq. (1) and the

series expansion for F given by Eq. (2.3.1) imply

¥ @ o
i=2

The terms in this summation are independent of each other in the sense
that 2‘2) is proportional to R-z, §f3> is proportional to R_B, and so forth,
and R may be taken to be arbitrarily large (see Eq. (2.3.3). 1It follows

that they vanish separately, that is, that

Hence

al°£ﬁ2) =0

and, using the expression for gﬁz) given in Eq. (2.3.3), one finds that
a,*Iea, = 1 tr(I)
=== 3 =

Since tr(I) is an invariant, the moment of inertia 51'1721~°f B about the

*
line that passes through B and is parallel to a, has been shown to have the
same value for all orientations of 2, relative to B.

Example: To show that a solid sphere S of mass m is centrobaric if

the mass density p at a point P depends only on the distance r between P
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* - -
and the center S of S, the force F exerted on S by a particle P of mass m

will be calculated.
The position vector p of P relative to -1;, expressed in terms of the
—_ %

spherical polar coordinates r, 0, y, the distance R between P and § , and
the unit vectors 8y, 8,, 84, shown in Fig. 2.5.1, is given by

p=(R+rcosyla, +rsiny sin 6 8, + r sin Y cos 0 a, (2)
The volume dt of a differential element of S is

2

dt = r" gin ¥ dr do dy (3)

and with p = p(r) the mass m of S can be expressed as

‘ a o T 2w
m=/pd"r=- rp sin ¢ do dy dr
0 0 0

or

& 2
m = 47 f r pdr (4)
0

where a is the radius of §S.

The force F exerted by P on S is given by

- — 2.-3/2
F = ~ G d
T (2.2.2) m/z(e ) pdt (5)

or,‘_ in somewhat more explicit terms, by
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SPHERE S (RADIUS a).

Figure 2.5.1
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a T 2T
F = - Gm / r2p f sin4(R2+2Rr coslH-rz)'P'/ 2 f p d6 dy dr {6)
(2,3,5) 0 0 ‘ 0

Using Eq. (2), one obtains for this inner integral in Eq. (6)

27 . _
f [ (B+x cosd})&l + rsinll)ainegz + rsinl[)coseg_3]d9 - 217(R+rcos¢)gl (7)
0

so that

a T ;
F = -2TGm f rzp / siny (R2+2chosw+r2)-3/2(R+rcosw)d\pd‘r 2 (8)
6,7) 0 0 1

Integration is now facilitated by the introduction of a new variable v

defined such that
v A R? + 2Rr cosy + £ ()

When this definition and the implied relationships

sinydy = - vdv/(Rr) (10)
9
and
R+ r cogy = (’v2 + R2 - rz)/(ZR) (11)
)

are substituted into Eq. (8), there results
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=3

— a (R~x), 2.2 2
E“‘E-.[ rp/ ﬁlﬂz_ildvdrél
v,

(R+r)

=]

— a Py
R® Y0 4) R
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2.6 Moment exerted on a body by a particle

The system of gravitational forces exerted on a (not necessarily rigid)
body B of mass m by a particle P of mass m produces a moment M about the

*
mass center B of B, given by
M=~RXF &)

where F is the resultant of the system of forces [see Eqs. (2.2.1), (2.2.2),
and (2.3.1)] and R is the position vector of B relative to P. If the

- ®
distance R between P and B sgubstantially exceeds the greatest distance

*
from B to any point P of B, this moment can be expressed as

M= 2GR . yea + SR Zm(i) (2)
-3 &by vy &

- *
where a, is a unit vector directed from P toward B , G is the universal

*
gravitational constant, I is the inertia dyadic of B for B , and the dimen~

sionless vector E(i) is a collection of terms of ith degree in I r '/R, with

- %
r the position vector of a typical point P of B relative to B .
Eq. (2) suggests the approximation

3Gm
A ;’j— a;xl-a, (3)

=

H:

Expressed in terms of scalars Iij’ 1, = 1,2,3, defined as

-_I_-_a_k 3,k = 1,2,3) (4)
the vector M is given by
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~ 3Gm
H=73 (ngy = Ing) )
Alternatively, one can introduce a dextral set of orthogonal unit vectors
%
l\’-l’ _1_:_2, __b_3 parallel to the principal axes of inertia of B for B , and

express ﬁ in terms of the principal moments of inertia 11, 12’. I3 of B

. v
for B and the direction cosines cij’ i, = 1,2,3 defined respectively as

I, Ab,*I*b =1,2,3 6
;/‘ ‘3

and

L

Cij é"a'i.hj (1,3 = 1,2,3) (7

thus of:taining

~  3Gm

B=73 [by (T3-15)Cy 50y 3 + By(T)~13)C, 5Cyy + Bg(I,=-14)Cy,Cyp) (8)

(5), despite its apparent simplicity, is less useful than Eq. (8),
both because the products of inertia 121 and 131 vary with the orientation
of a relative to B and because the rotational equations of dynamics are
generally most easily formulated in terms of the vector basis P—l’ _1:_»_2, 23.
It should be noted that fﬁ_, which by Eq. (3) is the first term in Eq.

(2), can vanish when M does not vahish. Hence, when using ﬁ as an approxi-

mation to M one is not necessarily retaining the largest term in the series

expansion for M. Specifically, M vanighes whenever a, parallels a principal

%*
axis of inertia of B for B , but this state of affairs need not produce a
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zero value for M (see Prob. 2g). Moreover, ﬁ is identically zero for any
body with spherical inertia ellipsoid, whereas M is identically zero only
if that body is also centrobaric (see Seq. 2.5 and Prob. 2e).

Derivations: If B is a continuous distribution of matter, then the
resultant F of the gravitational forces exerted on B by P can be expressed
in terms of the force dF exerted by P on a differential element of B at a

generic point P of B as

%
and, if r is the position vector of P relative to the mass center B of B,

. * .
then the moment M of the system of gravitational forces about B is

_n=fr_><111_ (10)

Substituting

r=-R+p (11)

* —
where R is the position vector of B relative to P and p is the position

vector of P relative to P (see Fig. 2.6.1), yields

M = f(—ymx.dz- -§x£+/1>_x£1_?. (12)
(10,11) (9

But dF parallels p, so that p X dF = 0 and

M = -RXF (13)
(12)
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confirming Eq. (l). Alternatively, this result can ‘also be inferred from

Sec. 2.2 and from the fact that two equivalent séj‘vstems of forces have equal

i

moments about every point. Hence it applies also whlzen B consgists of a )
finite number of particles, Pl’ coey PN' ‘

Eq. (2) for M is to be proven under the same r‘e‘strifét’;ionp on R and on .

the dimensions of B as apply to the expression for F in Er,i. (2.3.1). 'Und(er-
N ///’

i ; ‘ : )
these circumstances, substitution from Eqs. (2.3.1) and (2.3.2) into Eq. |

|
(13) yields !

R WD Rl L OLT S RS A .

and use of Eqs. (2.3.3) and (2.3.4) then gives

M==—3—@—a X I.a +-G-§—E-2a Xf(i) (15)
= R3 =1 == . R 1_3—1 =

&)

which is equivalent to Eq. (2) if m is defined as

.n_l(i) éé.lxi(i) ’ i=3, ..., ® ; (16)

Verification of the equivalence of Egs. (5) and (8) with Eq. (3) requireé

the substitution

a, = C.b a7
b .2.2) 1

After setting

,f'\\
(Z) Iij'a"i'a'j - (18)
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one then arrives at Eq. (5), and using

I =1bb. +1I

I b.b b,b, + I.b.b (19)
6) 171 222

2 3=3~3
one obtains Eq. (8).

Example: The vector ﬁ_defined in Eq. (3) is to be used to approximate
the moment M exerted by a particle P of mass m about the mass center B* of
a homogeneous, right circular cylinder B having moments of inertia J and I,
regpectively, about the symmetry axis and about any line through B* and
normal to the symmetry axis. The result is to be expressed in terms of two
angles,$ and 6, used to specify the orientation of the symmetry axis of B
relative to a dextral, orthogonal set of unit vectors 2,5 8y, 85. Specifi-
cally, as shown in Fig. 2.6.2, 6 is the angle between ag and the symmetry
axis of B, and ¢ is the angle between gz'and the intersection of the plane P
passing through B* and normal to 2, with the plane Q determined by the
symmetry axis of B and a line passing through B* and parallel to 24.

Of the alternative expressions for g given in Eqs. (3), (5) and (8),
the last is the most convenient, for suitable unit vectors ki’ EQ, and 23_
can be introduced readily, for example as shown in Fig. 2.6.2, where bl

is normal to plane Q. Using Eq. (7), one then finds that
C11 = cos ¢

C12 = - cos O sin ¢

(@]
]

13 sin 9 sin ¢
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SYMMETRY AXIS

Figure 2.6.2
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and, in accordance with Eq. (6),

1l 2 3
Hence
~ 3Gm
M = ~—— (I -J) sin 9 sin ¢[b, cos 6 sin ¢ + b, cos ¢]

If I #J, _f_"I_ vanishes ohly when at least one of the following conditioms
is fulfilled: sin ¢ = 0, 8in 6 = 0, or cos 8 = cos ¢ = 0. In all of these
cases, the symmetry axis of B is eit;her normal or parallel to the line joining
P and B*, and considerations of symmetry indicate that M also vanishes under
these circumstances. Thus it appears that ﬁ = 0 can imply M = 0 for a

particular body, aithough this implication is not valid in general,
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2.7 Moment exerted on a small body by a small body

When the distance R between the mags centers ]32’g and 'ﬁ* of two (not
necessarily rigid) bodies B and B substantially exceeds the greatest dis~
tance from the mass center of either body to any point of that body, the
system of gravitational forces exerted on B by B produces a moment M about

*
B which can be expressed as

3Gm Com ©= (i) ., Cm s~ % (i)
M= g x Tea, + 22 3 n +———Z 2m (L
A T R jo2 jm2 ™

where 3 isa unit vector directed from -ﬁ* toward B*, I is the inertia dyadic
of B for B*, m and m are respectively the masses of B and B, G is the uni-
versal gravitational constant, and the dimensionless vector g(i) is a
collection of terms of ith degree in | £| /R, while the dimensionless vector
g(ij) is a collection of terms in the product (|r] /R)i(l;l /R)j, with r and
E respectively the position vectors of generic points of B and B relative to
B* and _ﬁ*

The similarity of Eqs. (1) and (2.6.2) suggests that an approximate

relationghip similar to Eq. (2.6.3), namely
MXMA=a, x Ia (2)
may prove useful. The vector ﬁ thus defined can be expressed as

~  3Gm
i=73 (Iy185 - I48,) 3

or as
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~ _ 3cm } B
M= 3 [by (13-1,)C1,Cy 5 + By (T =15)C; 40y + by(I,-11)C44Cy5] 4
where b

845 b, Ii’ Iij’ and Cij have the same meaning as in Sec. 2.6, and ﬁ,
that is, the first term in Eq. (1), can be dominated by other terms in the
series. A significant difference between Eq. (2.6.2) and Eq. (1) is that
the former can be replaced with Eq. (2.6.1), whereag the latter cannet be so
replaced, even if R and F are re-defined respectively as the position vector
of B* relative to 5* and as the resultant force exerted on B by B.

Derivations: The validity of Eq. (1) can be established by using Eq.
(2.6.2) to represent the moment exerted on B about B* by a differential
element of B located at a generic point P of B (see Fig. 2.7.1) and then
integrating over the figure of B. Specifically, if R is the distance
between P and B*, a8 is a unit vector directed from P toward B* R 'f). is the
mass density of B at P, and dT is the volume of a differential element of B
at P, then, from Eq. (2.6.2), with R, 8 and @ replaced by R, gl’ and

‘pdt, respectively,

=.f(§.§ a, x I3 + ... )’ad? (5)
R

where the three dots represent terms of third or higher degree in | r l /R.

=

Because I consists of terms of second degree in |r|/R, the integration in
Eq. (5) can produce only terms of second and higher degree in |r |/R, -and
the substitution of 2 for El and R for R cannot result in the loss of any
terms of interest. These substitutions permit the first term in parentheses
to be removed from the integrand, -leaving as a factor an integral equal to

the mass m of B, confirming the first term in Eq. (1); and they yield the
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first series in Eq. (1). The second series in Eq. (1) reflects the deviations
of 2 from g& and R from R. Every term in this series involves lfJ/R, and

it does not contain termsxginear in [EI/R because E:is drawn from the mass
center of B. ’

Eqs. (3) and (4) can be/obtained from Eq. (2) by a procedure analogous>
to that used to derive Eqs. (2.5.5) and (2.5.8) from Eq. (2.5.3).

Example: In the Example of Section 2.4 (see Fig. 2.4.2), an approxi-
mate expression was developed for the force exerted by a homogeneous. oblate
spheroid B on a homogeneous rectangular parallelepiped B. Now an approxi-
mate expression is to be obtained for M, the moment exerted bylf on B about
the mass center B* of B. To this end,jﬁ as given by Eq. (4) is to be
formed, and the magnitude of ﬁ_is to be determined for

@ =6 x 10%% k.

160 k.

o= 16 m.

=4 m.

4.2108 x 10 m.

6.6732 x 10711 Nn? kg

@ ® ™
L]

2

As in the Example of Sec. 2.4, the system roughly approximates the
earth B and a large, synchronous altitude artificial satellite B.

The symmetry of B permits the substitution of I, for I, in Eq. (4),

2 3
furnishing
~  3Gm
R R B L PACEL Rl PLEY (6)
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from which

2 .1/2

11

(1,-1.)C.. (1-C
(l.2.14) g5 124

~1 - 36m 2 .2
] = 3" (1710, C13403)) ™

Variations in the magnitude of _ﬁ_ resulting from changes in the relative
orientation of B and B thus depend only on changes in the angle between a,
and :Q_l, and Iﬁ_l attains its maximum value when this angle is equal to m/4 rad.,

since the derivative of |M| with respect to C,, vanishes when Cyq is 1/72.

Thus, for any body B with I3 = IZ’
~ 3Gm
ly-lm,ax 2R3 (Il - 12) ®

and for the given rectangular parallelepiped, for which

2
mo,
Il = -—6—' 9)

and
m 2 2
12-13-ﬁ(a + B9) (10)

|ﬁ| becomes
—'max

. — 2 52 2,2
mm - Gumn(ct3 ™) _ im(a 38 ) (11
8R 8R

or, after using the given numerical values,
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o= e

| &
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6.67 x 1071 x 6 x 10%% x 160 x (256 - 16)

8 x (4.2108)° x 10%%

2.6 x 107 Na.
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2.8 Proximate bodies

When dealing with the gravité,tional interaction of two bodies which are
in close proximity, one can at times make effective use of results which,
at first glance, may appear to be inapplicable because -they were encountered
initially in connection with the analysis of the gravitational interaction of
widely separated bodies. For instance, consider Eq. (2.7.2), which furnishes
an approximation that becomes ever better as the distance R between B* and -
_B-* (see Fig. 2.8.1la) grows in comparison with the largest dimension of either
body. Eq. (2.7.2) can be useful also when B and B are near each other (see
Fig. 2.8.1b), provided B does not differ too much from a centrobaric body
(see Sec. 2.5) and R is sufficiently large in comparison with the largest
dimension of B. For B then acts nearly like a particle of mase m situated
at the mass center 'f* of f; the resultant moment about B* of the forces
exerted on B by such a particle is given to a good approximation by Eq.
(2.6.3); and this equation is identical with Eq. (2.7.2).

Example: Fig. 2.8.2 shows a particle P of mass m situated on the
axis of revolution of a uniform oblate spheroid B of mass m, at a distance
R from the mass center B* of B, To explore the utility of Eq. (2.3.6) in
situations involving proximity of a particle and a body, the ratio f«‘/F is
to be plotted versus B for various values of e, where F is the magnitude of
i as given in Eq. (2.3.6), F is the magnitude of F as given in Eq. (2.2.2),

and B and £ are defined as (see Fig. 2.8.2 for a and b)
B AB/R (1)

and

e A1 - (b/R)4/2 (2)
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(a) REMOTE BODIES

ot

B'l'

{b) PROXIMATE BODIES

Figure 2.8.1
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Figure 2.8.2
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If a, and a, are unit vectors as shown in Fig. 2.8.2, and 8y = 8 X a,,

#*
then the associated moments and products of inertia of B for B are given by

2 ;
2ma - <2 2
Li=T5 s Ip=Ipy=5@ +b)
Lig=TIy3=1I5 =0
Hence
£(2) e - _37 a2 - b2 a
(2.3.10) 5R
1:; = -9-2—-[1--—3'5(32—1)2)] 81
(2.3.6) R 5R
G 3 p2c?
"y T2 L5 7 )4
and
. . — 22
Fglgl-(ﬂ;— ‘1-%—-5—2-‘ 3)
R l-¢

For the evaluation of the integral in Eq. (2.2.2), it is convenient
to introduce the coordinates r, 8, and z shown in Fig. 2.8.3 and to note

that p, the position vector of P relative to 5,‘then can be expressed as
p= (R - 2)51 +1r 8in 6 a, + r cos O 2,

while

dt = r d0 dr dz
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Figure 2.8.3
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As for p, the mass density of B, this is given by

3m
Aﬂbaz

(R—Z)a +rginfa, +rcose‘g,.3
r dr dz 46

e A e

Hence

E = -
(2.2.2) 4ﬂba

where
2,1/2
91 = 0, 62 = 273 z, = -b, z, = b; r, = 0, r, = all-(z/b)"] /

and, after carrying out the indicated integrations and using (1) and (2) to

eliminate S/R and a/b, one arrives at
— 2 1/2
sam@-e? |, _ 4D 0y e %)

FA|E| =
Rszez 2Be

where H is defined as

: 2
-1 _1-e”(1-BE)

H(E) A sin S
[1-e°(1-89)]

1/2

B

Consequently,
N |
E } 8252 5 1- €2 )
F 2 1/2
(3,4) 3(1-%) 1_82
1- 22— [HQ) - BED)
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In Fig. 2.8.4, F/F as given by Eq. (5) is plotted versus B for four
values of €. Note that small values of B correspond to placing P at a great
distance from B* (see Eq. (1)). Hence it is not surprising that, regardless
of the values of €, §/F approaches unity as B approaches zero. Conversely,
values of B near unity represent situations in which the particle comes
relatively close to the spheroid; and the error one then makes when using
F in place of F can be seen to depend on €, larger departures of §/F from
unity being assoclated with larger values of €, that is, with a more pro-
nounced flattening of the ellipsoid (see Eq. (2)). However, it appears that
even for B 1.0, that is, for a particle that is nearly in contact with the
- spheroid, F/F departs only very slightly from unity so long as € < 0.10,
which is’the case, for example, when € = e*, where e* is the eccentricity
of a spheroid whose major semi-diameters are equal to the earth's polar
and equatorial radii. Consequently, Eq. (2.3.6) may be expected to yield
highly accurate results when used in an analysis concerned with a near-

earth satellite idealized as a particle.
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Figure 2.8.4
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2.9 Differentiation with respect to a vector

It is sometimes convenient to employ vector operations on scalar
functions in order to express gravitational forces and moments, These
operations may be interpreted as ordinary and/or partial differentiations of
scalar functions with respect to vector variables, In some cases the vector
in question 1s a position vector, and the ordinafy derivative is then a

spatial gradient. When the differentiation of a scalar function produces a

force, the scalar function is called a force function. In other cases dif-~

ferentiations with respect to other vectors are employed, as in the representa-
tion of gravitational moments iniFerms of. derlvatives with respect to unit
vectors.,

To unify the presentation of this subject in Sec., 2.10-2,20, the math~
ematical tools there employed are first discussed briefly in this Section,

If a scalar quantity F depends on a vector v, then it is useful to define
a vector denoted by YVF as follows: Introduce an arbitrary set of mutually
perpendicular unit ve;tors ajs @, and as3 let vy Ave a, (1=1,2,3); regard

F as a function of Vs Yy and ALY and set

3F 5F 3F
L Fhoy 21t oy, 8 Y5y, 8 )

The vector Yv F constructed according to Eq. (1) is invariant with

respect to the choice of vector basis a;s 2y 2 The operétion denoted by

3°

Yv may be termed differentiation with respect to vector v.

Similarly, if a vector quantity F depends on a vector v, and for some
arbitrary vector basis 2,5 a,, aj one defines Fi=é F e a, and vy=v °a
(1=1,2,3), then a scalar and a dyadic may be defined as
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aFl 3F2 8F3

V = F A + + (2>
-y == Bvl sz 8v3

and
Ym Fa (Y‘_’ Fl) g + (YX Fz) 42 +(’ZV F3) a5 3

The quantities defined by Eqs. (2) and (3) do not depend upon the choice
of vector basis 245 395 a3.

In Eqs. (2) and (3) a vector differentiation concept is introduced
without identification of a particular reference frame in which the differ-
entiation occurs; this omission is possible only with the stipulation that
the orientations of the unit vectors 215 255 24 do not depend on V.

Further useful quantities are at times obtained by cascading some of
these definitions. For example, when the operation defined in Eq. (2) is
performed on the vector defined in Eq. (1), the result is a scalar denoted by
Ys F:

2
T, FAY, (L, ) @)

When v is the position vector p of a genmeric point relative to some
other point, and when the vector p can be inferred from the context, the
subscript v = p is often omitted; the quantities VF, V°F, VF and YZF are
then called respectively the gradient of F, the divergence of F, the gradient
of ¥, and the Laplacian of F.

As a consequence of the definitions given in Eqs. (1)-(4) and of
various theorems of the differential calculus of functions of one or more
scalar variables, the quantities Zv F, ZV'E, and YiF satisfy many relation-

ships having counterparts in this calculus, For example, if v = w + ¢,
- -
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%
where ¢ is independent of v, and if F(X) and G(ﬂ) are functions such that

G(y) = F(wtc), then

V,F=F,0 (5)

Or, suppose that z(gl,...,gn) denotes a vector function of the scalar inde-
pendent variables g;,...,8,; suppose, further, that F(v) and G(gl,...,gn) are

functions such that G(gy,e.0, 8 ) = F[z(gl, eas ,gn)]. Then

6 oy _
Bgr = YY- F e agr (r_l,eoogn) (6)

Three differentiation formulas involving a unit dyadic U and a unit

vector u having the same direction as a vector v will prove useful in the

sequel, These are

Y, r=1 ™

Yy v=u (@)
and

V,u=vi@-uw &

where v A v * u, so that v = v u.

In dealing with gravitational moments, it is at times convenient to
invoke the idea of partial differentiation with respect to a vector, im
the following sense: SsSuppose that 215 395 23, V, Vs U and F have the same

meanings as heretofore; let u, Au- ay (i =1,2,3); and let v(u,v) and

G(E,v) denote respectively a vector function and a scalar function of

- .
As a notational convenience, a scalar quantity such as F which depends upon

the vector v is designated F(v); the functional representation of this
quantity (as required by Eqs.—(l)—(4)) is written F(vl,vz,v3) or
F(v',vé,vé), where A Av e a and Vi=é v e gi (i=1,2,3)"fot arbitrary
vector“bases a,,a,,a; and gi,gé,gé.
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Uj5Uy,Ug, and v, choosing G(u,v) such that G(u,v) A F[v(u,v)]. Then, defining

9G/du as
3G A 3G 3G 3G
3w 3w, 217 %, 2% 5u, 2 10

one can write

_ 36, 3
YvF"a‘g V,u+zou an

or, in view of Eq. (9),

_193 (36 136,
ygF‘Va_*.(W'??{ ‘-‘)E 12)

yxY¥, Feuxgy (13)

Derivations: In characterizing a quantity as a function of a vector,
one implies that the quantity is représented in terms of the scalar compo-
nents of the vector by the same functional relationship, regardless of wvector
basis, Thus for example if the sgcalar quantity F is a function of the vec~
tor v, and v, Av - a; and vi Av - gi(i=1,2,3) for arbitrary orthogonal

] 1 )
vector bases 21535534 and 21535533, then in functional notation

F(Vl’VZ’VB) = F(vi,vé,vé) (14)

Using this relationship, one can prove the invariance of YVF, ZV *» F,

YVE and YiF with respect to the choice of vector basis by establishing
the equality of alternative representations of each of these quantities in
terms of the arbitrary orthogonal vector bases gl,§2,§3and gi,gé, and gé.'

This objective can be accomplished’as follows:
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Letting C

and

Aa oa!

=i =]

ij =

al ¢

-3 13

?
Ty

3

Cij

Cyy

2,

from the last of which it follows that

and

But

Hence,

C

24

= 5
k (1.2.15) Jk

9F al

(19,20) 3

9

=%
! & ik Bvi -1

which establishes the invariance of Yv F.

(17)

oF! ov!

k

i B ka \v

C1x C13 Q. 2 15)

69
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‘ﬂ

v

o -

i

For V
-V

(i,3=1,2,3), one can write

* F, one has

@15)

(16)

an”

(18)

(19)

(20)



and the proofs

When F in
V. v
—Z -
Now,
V. v
v
Hence
V v
-] o

2,9

for V_F and V_ * VF proceed similarly.

Eq. (3) is replaced with v, one has

“(%vi)e

=§ =H

i34

in agreement with Eq. (7).

If v = v u, so that u has the sdme direction as v, then

and

{

which proves the validity of Eq. (8).

As for Eq. (9), note that

V u=YV (v-lv) = (V v-l)v + v—l V. v
- (+Pr vyt
()i

(7,8)

= @ - w)

(21)

(22)

(23)

(24)

Finally, in connection with Eq. (11), note that both uy and v can be

expressed as functions of VysVysVg (where vy Av - é.i),.
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2 2 2\ =5 2 2 2\ %
ui =vy (vl + Vo + v3) s V =('v1 + Vo + Vs )

It follows that

JF G i 9G ov
CLAN . A + = (25)
3vi Buj Bvi ov 53;
so that
vop = X . o_x M seay
-V 1) Bvi =i (2) uj Bvi =1 v v, -1

and this is equivalent to Eq. (11) since Yv u is a symmetric dyadic, as 1is
apparent from Eq. (9). )

Example: 1In Fig. 2.9.1, r,) and B are spherical coordinates of a point
P, and 21,22,23 are unit vectors pointing respectively in tﬁe-directions in

which P moves when r,A,B are made to vary, one at a time. The position vector

p of P relative to 0 may be expressed as

p (x,A,B) = r(ckcBgl + skcBg + sBaB) (26)
If F(p) denotes a function of p, and if G(r,A,B) is defined és

G(r,A,B) A Flp(r,),R)]
then Eq., (6) can be used to express the gradient of F in the following
frequently convenient form:

VF=32b toman by + I35 by (27)
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Figure 2.9.1

72



2.9

To this end, one may begin by evaluating the partial derivatives of p

with respect to r,A and B:

op
Y (;6) chcBa; + shcBa, + sBa, = by (28)
o
ETN (22) r(-skcBa; + chcBa,) = reBb, (29)
%
38 (zz) r(-c}\ng1 - sksBa, + cBga) = rb, (30)

Next, from Eq. (6), and with V written in place of YE’

3G op
T T (28)
j
| " _
Bayresd = reBWF b, (32)
i (29)
: ' 9p f
6 _Ype= = rVF b (33)
B = B (399 ~ =

|

4
Now, since Elgl + 2292 + 93_3 is a unit dyadic,

VE = VF + (bjb) + byb, + bgb

3P3)

= VF © byby + VF © byb, + VF * bgb, (3%)
Solving Eqs. (31)-(33) respectively for VF * b;, VF ¢ b,, and VF * b,, and

substituting into Eq. (34), one arrives at Eq. (27).

The Laplacian of F may be expressed as

9
2 1 9 2 3G 2, 9°G 3 3G
VF’_I_-Z-[a—r(r 3;)"1’ sec B‘;;'z"l' sec B‘é‘s‘(cs'a'é—)] (35)

by using Eq. (4) in conjunction with Eq. (27), as follows:

73



2,9

Vi = V.V = (
(4) (27)

Q)
Q

1 9
b +.—B-—5\_ +

9 1
1 ] 57 (YF) + ?C—B- b2 —x (VF) + 3 —T (VF) (36)

it
o

Evaluating the partial derivative appearing in Eq. (36) but displaying only

those terms that will not be eliminated by subsequent dot-multiplications, one

has 2
2@ = 25p 4 ...
(27) or
__?_(VF)_—.BG 3b + 1 BZGb +!‘..§_G._a_'t'.)'é+
A = ar BA rcf a)\2 -2 roBa oo
P N N TN
T 9r =2 7 ref 32 =2 oB “F=2 T °¢
b 2
3 -6 -1 ,13¢6
-a—g(y.F)"'ar B +r38223+.o.
2
=%(]?:EB+%-§?G’—E3+...
and substitution into Eq. (36) then yields
2. 3% .23 . 1 % 8 %, 1 5%
VFE=—* >t 23, 2" BT
ar rc”B 9A r cB 9B

which is equivalent to Eq. (35).

74



2,10

2,10 Force function for two particles

The gravitational force F exerted on a particle P of mass m by a particle

P of mass m (see Sec. 2.1) can be expressed as

F=VVAW L
- --2 N

where p is the position vector of P relative to P and V is given by

V = Gamp T + C 2)

with p defined as

PA (.22);2 (3)

and C an arbitrary constant, while G is the universal gravitational constant.
A scalar function of a vector variable is called a "force function if
the derivative of the function with respect to the variable is equal to a
force, Thus V is a force function associated with the gravitational inter-
action of two particles,
The Laplacian of V (see Sec. 2.9) is zero:
v = 0 )

Eq. (4) is known as Laplace's equation, This equation arises in many prob~-

lems of physics, such as electrostatics, magnetostatics, hydrodynamics,
and heat flow, as well as in gravitation, and it is one of the classical
equations of partial differential equation theory. Any solution of Laplace's

equation is called a spherical harmonic, and in the context of‘gravitational

problems a solution is classically called a gravitational potential. For the

purpose of characterizing the interaction force F between two particles,
however, only that special spherical harmonic given by Eq. (2) provides the

force function appropriate for substitution into Eq., (1),
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Derivations: Differentiation of V with respect to p gives

Ww = GﬁmYpul = --Gﬁmpm2 u (5)
2) (2.9.8)
where u is the unit vector in the direction of p, that is,
j u=p"p (6)
Cbnsequently,
/ - =3
VW = —Gmmp “p = F 7
= (2.1.1)
ﬂhe Laplacian of V 1is
Vv = vew = @l - (p )
/ (2,9.4) a -
= cim (3p™'wp - %7°) = 0 ®
(2.9.8, B
2.9.2)

Example: A particle P of mass m and two particles P, and P,, each of

| mass m, are situated as shown in Fig. 2,10.1, where r,\A and B are spherical

| coordinates of P and 91,92,23 are unit vectors pointing in the directions in

which P moves when r, A and B are made to increase one at a time, A force

function V for the resultant gravitational force F acting on P is to be con-

structed, and this function is to be used to express F in terms of components

respectively parallel to b bz,b

1 3

The forces Fi and F, exerted on P respectively by P1 and P, can be
expressed as

F, = ypivi (1=1,2) (9

where Py is the position vector of P relative to P, and where Vl(Bl) and

i
V2(22) are given by

V, = Gﬁmp;l +C

(1=1,2)
1@

i
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Figure 2.10.1
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with Py equal to the magnitude of ;e Hence

F=F +7F vV V. +V Vv (10)
- =1 2(9) El 1 ~Py 2

If p is now introduced as. the position vector of P relative to 0, then

B;j =Pty (i=1,2) where ey is independent of Py if then Wi(p) is defined
as
then
ypivi AN (i=1,2) (12)
(2.9.3) B
Hence
F = VW + V W, =V W, +W)=V V (13)
(10,12) Bt 2 p 120 -p

where V 1s defined as

VAW +W, = V, +V, = Gﬁ'm(pzl+p'2'1)+c (14)
(11) (12)

V is the desired force function.

To express F in terms of components parallel to b sP b3, note that

Py = (rz +1% - 21:Ls:i.nB);i (15)

and

p, = (rz +12 4 2rLsinB) & (16)
and define a function W of r,A,B as

W A Gmm [(r2+L2—2rLsinB)_;§ + ( r2+L2+2rLsinB) "1"5] +C an
Then

v = W (18)
(14-17)
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and Eq. (27) of Sec. 29 provides

JW, L 1w, Ll
va"'é_fhl"'rcﬁalhz"'raﬁpﬁ

(;)-Gﬁm [ ( r2+L2—2rLsinB)_3/2 (r-L81n8)

-3/2

+ (r2+L2+2rLsinB) (r-l-LsinB)] P-l

-3/2
>3

+ Gmm [(r2+L2—2rLsin6 LcosB

) 3 -3/2 |
- (r +L +2rLsinB) LcosB ] 1_33 {19)
Substituting from Eq. (19) into Eq. (13) one then arrives at the desired

expression for F,
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2.11 Force function for a body and a particle

The resultant gravitational force F exerted by a particle P of mass
m on the particles of a (not necessarily rigid) body B (see Sec., 2.2) can be
expressed as

F =YV 1

* =
where R is the position vector of the mass center B of B relative to P

and V is a force function given by

N
V=GEE mipi-l+C (2)
i=1
with
2\%
A
P1=(Ei) (i=1,...,N) 3
and
pyAR+T,  (i=l,...,M )
Here B is presumed to consist of particles Pl""’ PN of masses Myseces
Myes Py is the position vector of I’_l relative to P, assumed nonzero, Iy is the

%
position vector of Pi relative to B, C is an arbitrary constant, and G is
the universal gravitational constant., If B is a continuous distribution of

matter not including the point occupied by P, then V is given by

V= Gﬁfp‘lpdt +C (5)
with

PA(#)% )
and

P=R+r

where p is the mass density of B at a generic point P of B, p is the posi~-

tion vector of P relative to P, r is the position vector of P relative to
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&%
B , and dT is the length, area, or volume of a differential element of the

figure (curve, surface, or solid) occupied by B.

The force functions in Eqs. (2) and (5) both satisfy Laplace's equationm:

vy = 0 S

Derivations: Differentiation of V with respect to R gives
N

~ 3 -2
V.V =-Gm 2, mp. V. op )
R o i T R
Now, 9 o 9 -
ey = Y| @ep?| - [wep?] @) @)
=7 (3,4) = 2
- -1 . _ -1, -1
Hence
N
- -3
Vv = -Gm 2: m,p, P, = F
R (8,90 i=1 L) T

A parallel derivation shows that Eq. (1) remains valid when Eq. (2)
is replaced by Eq. (5).

Eq. (7) follows directly from Eq. (2.10.8), since the order of the
operations of evaluating the gradient and integrating over B is interchange~
able,

Example: A uniform, thin rod B of length 2L and mass m is subjected to
the gravitational attraction of a particle P of mass m. The value of a force
function V associated with the resultant gravitational force exerted by P on
B is to be determined in terms of the cartesian coordinates x,y of P for a
coordinate system with origin at the mass center B* of B, as shown in Fig.

2,11,1, The constant C in Eq. (3) is to be chosen such that V approaches

zero when y=L and L/x approaches zero.
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.

Figure 2.11.1
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If the rod is regarded as matter distributed along a straight line
segment, then the distance p from P to a generic point P of the rod can be
expressed as

p= * + nz);i
where n varies from y-L to y+L. The mass density p of B at P is equal to
m/(2L), and a differential element of B has a length dn., Hence,
Gmm ’ -

= fm f 2ind an+c

y-L

- |: (2, 2
=Gmm“z,n yHL + Vx© + (yHL) +C

2L
y~L + \/x2 + (y---L)2

and, when y=L,

2im V = C

- >0
X

which equals zero by hypothesis.,
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2,12 Force function for a small body and a particle

When a body B is subjected to the gravitational attraction of a particle
P removed so far from the mass center B* of B that the largest distance from
B* to any point P of B is substantially smalier than the @istance R between
P and B*, a useful.- form of the expressions for the force function V given in
Eq. (2.11.2) and (2.11.5) can be found as follows: Replace Py and p with
[(1_1 +r i) 2];5 and with [(I_{ + 1_:)2];5 , respectively, and then expand the integrand
in ascending powers of IEiI/R or l£|/R to obtain

V=§-%'?l(1+2 v(i))+c 1

1=2

where v(i) is a collection of terms of the ith degree in |£i|/R or |£|/R, m

and m are the masses of B and P, C is an arbitrary constant, and G is the

universal gravitational comstant. In particular, v(z) is given by
V(Z) - _lhi. [tr(}) - 3111] (2)
2mR

* .
where tr (I) is the trace of the inertia dyadic of B for B, and I  1is the
11
= *
moment of inertia of B about the line connecting P and B , so that (see
Fig. 2.3.1)

T8 *1°2 @)

Because I11 depends upon the orientation of a4 relative to B, Eq. (2)
is sometimes less convenient than an alternative fbrm involving central moments
and products of inertia of B for an arbitrary vector basis b;,b;,b', here
represented by
1 1

¥

The required expression is
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(2) _ i ] '2 % '2 ) 72
V=g [111 (1“3011 F Igp | 173C), + Igg 1“3C13)
mR
T 11 T T | [ ]
-6 (Ilzcuclz * 1130903 * I23‘:12“13)] )

where

'
o hT
Cij A a4 P.j

£ ? 7
When B is a rigid body and bl’bZ’ and b3 are fixed in B,_the scalars 1

jk
(3,k=1,2,3) in Eq. (5) become constants, whereas I11 in Eq. (2) remains a

variable,
For the special case in which the body-fixed unit vectors parallel

*
principal axes of B for B , past conventions (see Sec. 2.3) suggest the nota-

tion

2 2 _2—m—];2- [11 ( 1-3cii) + 1, (1—3ci2) + 1, ( 1-30%)] (6)

where Ij and Cij (j=1,2,3) are defined respectively by Eqs. (2,3.8) and (2,3.9).
Eqs. (5) and (6) adopt particularly useful forms when the indicated

direction cosines are written in terms of the spherical polar coordinates

shown in Fig, 2,12.,1. Eqs. (5) and (6) then become respectively,

(2) _ 1 ( 7  { ] ) 2 ) k] 7 2
v —— [ I, + 1, - 2133> ( 38in“B-1 -3(111 - 122) cos“Bcos2)A

4mR
1 2 ¥ 1
-6 (112 cos Bsin2)\ + IlssinZBcosA + 123 sinZBsinA) (7)
and
4mR
-3 (I -I coszscosZA
1 72
It is often convenient to introduce some measure of the dimensions of
B into v(z) in order to obtain an expression involving dimensionless

85



2,12

Figure 2.12.1
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constants and dimensionless variables. If the symbol RB is assigned to the

selected normalizing dimension, and the symbols

-1

J é ’;"——2" (Il + 12 - 213) (9)
and
3
EA—'——'(I—I) (]_0)
o 12

are introduced, then Eq. (8) becomes
2 2
R R :
) _ g_(__l;) ( 2_) _e_(_};) 2 .,
v = - J\R 3sin“B-1) + >\ g/ cos Bcos2) (11)
If ‘i_; is the approximation to F defined in Eq. (2.3.6), then f can be

expressed as

1y

=vV 12)
where V is given by

=%“-“l(1+v(2))+c (13

<2

and R is the position vector of B* relative to P.

In other words, V is a force function suitable for dealing with the
gravitational interaction of a body and a remote particle ﬂwhen one uses T to
approximate F,

As previously, t-he force function V satiéfiés Laplace’s equation; more-
over, %7 also satisfies Laplace's equation.

Derivations: Replacing p in Eq. (2.11.5) with [(R + r)z];i provides

- 2 2-}i
V = Gm (13 +2_&°g+£) pdt + C (14)

Introducing q as q A r/R, noting that R/R = a;» and applying the binomial

series, convergent for IZI_{o r+ _152| <1, find
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2

1 2 3

+ .o |+ C @15)
Now,
[ pdr =m (16)
f rpdr =0 (17)
and
f[1:2-3(g]_-;)2] p dt = 3/‘(';'2-(2105)1]p dt -ifgzp dt (18)
Furthermore,
j‘ [52_ (§1.£ )2] pdr =1, (19)
and
2 f % p dt = tr(D) (20)
Hence,
. 2
f [5 -3(§1.£) ]p dt as, 15,2037t D (21)
and
v - @[1+1—2[tr(p - 3111]+ ...]+c
(15,16,17,21) "R 2mR

in agreement with Eqs., (1) and (2).

Eq. (5) follows directly from Eq. (2) with the substitution of

Eq. (3) for Ill’ the (summation convention) expansion

R
PR a

88



2,12

¥
and the definition of Cij” With these relationships, Eq. (2) becomes

(2) 1 £ § ¥ ¥
v = ——=(1.,,~-3a, *b, I,,b.* a)
(2,3,4) ZmRZ( 117 °%1 7 21 43257 2

]

1 (1' 3¢ 1 c')
o2 L1 11 iy Ciy

1 |2 4 12 1 !2
- [111 (1-3011) + I, (1--3012 ) * 1, ( 1-3c13)

1 ) ¥ ] ) ¥ ¥ ] 1 \ ) 1
-3 (112011‘312 * 1358183+ T21C10% 0 T 12301203
L B LI B )]
¥ I31%3%0 + 13281500 @23
|
' ' N

With the symmetry relations Iij = Iji’Eq' (23) confirms Eq. (5). Eq. (é) is
merely the speéial case of Eq. (5) with vanishing products of inertia and new

notation, and Eq. (7) and (8) are the special cases of Eqs. (5) and (6) in

which the relationship

\] ] ]
a, = cosBcosAEl + cosBsinlyz + sin8§3 (24)

from Fig. 2.12.,1 has been used to obtain for the required direction cosines

the expressions
)

1
Ci1 = cosBcosA Cip = cogBsin) ; Ci3 = sinf (25)

The combination of Eqs. (5) and (25) produces

4
? ]
V(Z) = —l_f [111.(1—3c0928c032l) + I (1—3coszﬁsinzk)

2aR 22

1

] ' ]
+ 133 (1f3sin26) -6 (Ilzcoszﬁcosksinl + 113cosBcosksinB

+ Iés sinBcosBsinA)]

1 ! .2 1 9
= ;;;2-{I11 [}-SCOS B G+ cosZA)] + 1, [l—3cos B(~-% cosZA)]
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Figure 2.12.2
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2 2
mL mlL 2
tr(l) ===, I;; =a; * L+ a =153 sin’y

after which substitution into Eqs. (2) and (13) gives

o — 2
v=gm [1 - ( 2-3sin2w)] +C (31)
24R ‘
In order to obtain this result by means of Eq. (11) rather than Eq. (2),
one must recognize by comparison of Figs, 2,12.1 and 2,12,2 that in this

example B = 0 and A = -, Substituting this result together with the mass

properties
2
=0 = 1. = L
Il—O 3 I, =I;=15 (32)
into Eq. (11) provides _
R 2 R 2 {
@ _ J(_g) (1) +€( B) (1) cos2y (33)
T4y 2\R - "2\ R
(11)
where
2 2 2
J=—+—1§(0+‘;12‘-2‘f£)=1‘2 (34)
(9) 2mRy 24R,
and
2 2
e = '32(‘m1iz)=Lz (35)
(10) ZmRB 8RB

Although it is customary to make some specific choice for Ry (such as
RB = L/2), in order to obtain numerical values for J and &, it is apparent

that in combining Eqs. (33 - 35) one can cancel RB from v(z); so the choice

(2)

of RB is irrelevant to v » The result then becomes
2
v(z) = l‘-i- %’5 + %6- colep]
(33-35) R
2 2
L 2 L 2
= Z;£2 [} + 3 (1—231n W)] =75 (4~631n w) (36)
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Substitution of Eq. (36) into Eq. (13) confirms Eq. (31), as assured
by the equivalence of Eqs. (2) and (11), For the orientation shown in Fig,
2,12,2 the calculation from Eq. (2) is more direct, but Eq. (11) offers the
advantage of explicit separation of mass properties and general kinematic

variables, all in terms of dimensionless quantities.

To verify that Eq. (12) is indeed satisfied, one may proceed as follows:

) - 2
vV = - 9;2'99. VR [1 + —I:~2 (2—331n21p>]
- (31) R - 24R
- 2 2
+ Gom [- —L——3 ( Z—BSinzlP) VR - Z stn2y ngp] (37)
12R - 8R
Now,
R=R (coslblzl - sinlbl_:z)
Hence

YBB = YRR (cosqﬂgl - sin\byz)
+R (-simp Th by = cosy Ty _132)
or, in view of Eqs. (2.10,6) and (2.10.7).

U= a, (coslbhl - sinwhz) - R YBID (simp_lgl + coslbl_)z)

]

23, - R Yg 2,

Dot-multiplication with 2, thus gives

and using YBR = al’ and Yglp = —EZ/R, one obtains
o Gim L? 2 2 2
YRV =--—-i-[§l+—2 (2—331:11!1)51——-—2 sinwgz] =
=((337) Rr 8R 8R

L)

(38)
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2,13 Force Function in terms of spherical harmonics

When a body B of mass t" is subjected to the gravitational attraction
of a particle P of mass m removed so far from the mass center B* of B that
the largest distance from B* to any point P of B is substantially smaller
than the distance R between P and B*, the force function V given in Egs.
(2,11.2) and (2.11.5) can as an alternative to Eq. (2.12,1) be represented

in series form as
- o0 Ri
v=21 4+ Y (28) ¢ |+c (1)
R ioo R i

where G is the universal gravitational constant, C is an arbitrary constant,

RB is an arbitrary distance such that R, < R, and

B

i
1 T
Cié E/(-R—B:) Pi(cos(x)pdr (2)

with r representing the magnitude of the wector from B* to a generic point P, p
representing the mass density function of B, and with Pi(cosu) representing
the Legendre polynomial with argument the cosine of the angle o defined by

Fig. 2.13.1. In this figure, R,\,B are the spherical coordinates of P,

r,u,Yy are the sperical coordinates of P, and o is the angle subtended by the
two lines joining P and P to B*. The series in Eq. (1) converges for (r/R)<1.

By definition, the Legendre polynomials are given by Po(y)é} and

130 ... (-1 | 4 _i(-1)  1-2  i(d-1) (1-2) (i~3) _i-4
Py 4 11 [ T2 ¥ terheEn-zs Yt ]

(i=1,..., «) 3)
with the bracketed series terminating with the yo term if 1 1is even and

with the yl term if i is odd. Thus

Po(y) 1 (4a)

(4b)

[
<

Pl(y) =
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B(iw)

Figure 2.13.1
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P,(y) =4 (3y>-1) (4c)
P (y) I (Sy>-3y) (4d)

Eq. (2) for Ci (i=2,...,%) can be written in such a way as to separate
the properties of B from the location of P relative to B by introducing the

associated Legendre function of the first kind, Pi(y), defined by

i (21)'(1 ~y )j/z[ i-3 ({-9)E-j=-1) _i-j-2
Py A KA y -Tﬁ{'ﬁ—zj——y

+ =1 (G-3-1) (d-1-2) (1-3-3) yi-3-4 = oo
LTIt + ] (1,3=0,1,...,%)

)

with the bracketed series terminating with the yo term if i~-j is even, and:
with the yl term if i-~j is odd. For specific indices of particular interest,

Pg(y)

Pi(y) (6a)

and

PLy) = AyD)7 5 Py = 3yA-yD 7 5 PA(») = 30D (6b)

In terms of associated Legendre functions,

i !
Ci = ;E; Pi (sinB)(Cij cosjA + Sijsinjk) 7N
where
1 T 1
Ciod Z f(fg) P, (siny) pdT (i=2,...,) (8)
¢, p 28t fre Ny i d i='2""’°°) @)
g 5T J(5) n et coompar {77
and

i

i i=2 o :
g (i— )! | r— j . goesvy
132 m -(Ti'jjT'-—,/-(RB) Py (sinf) sinju pdt (.’1‘1:'""”) (0

so that the constants Sij and Cij (for all indices) establish the properties

of B without reference to the location of P.
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When Eqs. (1) and (Z) are written in combination as

y-Sm| .5 )i‘, BV 2 (otnB) (C A+ S.. singd)
=3 2 3 R 1 sin 13 cosj ij sinj + C
i=2 320 an

the force function V is said to be in spherical harmonic form. Terms such

as Pi (sinB) cosjA and Pi (sinB) sinj) are classically called tesseral

harmonics of ith degree and jth order; tesseral harmonics of order zero are

called zonal harmonics. A linear combination of tesseral harmonics of ith

degree is called a surface spherical harmonic of ith degree, and the product

of Rf(i+l)

with an ith degree surface spherical harmonic is called a solid

spherical harmonic of ith degree, Thus Eq. (11) is a representation of V in

terms of solid spherical harmonics. The International Astronomical Union
has established Eq. (11) as a standard representation of the force function
of the earth, choosing the mean equatorial radius of the earth for RB. This
series converges only outside of a sphere containing all of the mass of B,
since convergence of the series in Eq. (11) requires r < R for all r; due to
the oblateness of the earth, the series does not converge for points in a
region of space above the surface of the earth ranging in thickness from zero
at the equator to approximately 20 km above the poles.

In comparing the alternative series expansions for V represented by

Eqs. (2.12.1), (1), and (11), it is helpful to recognize that

1
C, =—— | tr(1I) - 31 (12)
2 9 F% { - 11]

*
where 1 is the inertia dyadic of B for B , and I, is the moment of inertia

* =
of B about the line joining B and P. The equivalent contribution to Eq. (11)

is given by
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2
C,= 2, Pj (sinB)(C

cosjA + S
§=0 &

24 sinjA)

=l (3Sin28“1) C20 +-§ sin2B (CZlcosA + S

5 1sin}\)

2

+ 3 coszﬁ (CZZCDSZK + S,,8in2)) (13)

22

Physical interpretation can be provided for the constants c, and

3

S2j for j = 0,1,2 by aligning the unit vectors E',Eé, and Pé in Fig. 2.13.1

: %
with principal axes of B for B ; then

1
Chp = —5 (I, + I, = 2I,) (14a)
2mR
B
Cpp =8y = 859=0 (14b)
and
Cpy = - -—-1—2 a - 1) - (14c)
bmR

*
where Il, IZ’ and 13 are the principal moments of inertia of B for B,

More generally, when Ei, Eé and 25 are arbitrary orthogonal unit

vectors, then

Cpp = (I]; + T}, - 2153)/(2::11{]23) (152)
Co1 = "113/ (“%) 5 Cpp = ~(Iyy - 1'22)/ ("leza) (15b)
Sa1 = "%3/(“‘3123) ; S92 = ~Ip, (Zng) (5e)

For an axisymmetric rigid body B with its symmetry axis aligned with

Eé in Fig. 2.13.1, the constants S

13 (1,j=0,,..,°) and Cij(i=2,...,w;
j=1?...?m) in Eq. (11) are zero, and the remaining consﬁan;é Cyp are tradi-
tioﬁally relabeled such that

Ciolk~-Jy (16)
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Then V takes the form

- o i .
Gmm
V = T [1 an Ez Ji (‘E‘) Pi(sins)] 17

in which only zonal harmonics appear.

In the notation of Sec., 2.12 (see Eq. 2.12,13), V may be approximated

in some cases by

vy = [1 +(§§) cz] +c (18)

Laplace's equation is satisfied by both V'and‘v, so that

v2y = 0 (19)
and
% |
v = 0 (20)

Moreover, Laplace's equation is satisfied by
i+

vi A(5)

1 -

Pi (sinB)[AjcosjA + Bj sinjk] (21
for any constants Aj and Bj’ so that any truncation of the series expression
for V in Eq. (11) consisting of linear combinations of terms given by Eq.
(19) is itself an approximation of V which satisfies Laplace's equation,

Derivations: Application of the law of cosines to Fig. 2.13.1 provides

p2 = R2 - 2rRcoso + r2 (22)

permitting the representation

v o= Gﬁfp'lpdr+c
(2.11.5)

, 21
Gm r r
= — 1-2() cosa+ = pdt
(22) R/[ R’ S°8 (R)]
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The identity

2 Yil’i (x)

-
(1-2xy+y2) %=
i=0

permits the force function to be expressed in terms of Legendre polynomials

(see Eq. (3)) in the form

ad i

Gm r
v-2 (-ﬁ) P, (cos0) pdT + C (23)

i=0

*
whenever
Il <1

*
for all r, so that the distance r from B to P is substantially less than

R for all P in B. The first two terms in Eq. (23) simplify, since

PO (cosa) = 1 (24)
([98) K
and
Pl(cosa) = cosol (25)
so that
r 0
f(-i) Po(cosa)pd'l' =/pdT =m (26)

*
and by virtue of the definition of mass center B

i .
f(%) P, (cosa) pdr = 'Ili frcosocpd'r =0 (27)
Hence = 2 i
v = G—%‘l [1 + :—1 > (-Ir-{-) Pi(cosa)pd't]» +C (28)
(23,26,27) i=2

and, by introducing the arbitrary Ry with the identity

*
See 0.D. Kellogg, Foundations of Potential Theory, Ungar Publishing Co.,
New York, 1929, p. 128.
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& - 3)(E)

B

substituted into Eq. (28), one finds Eqs. (1) and (2) confirmed.
Eq. (3) is a definition, which leads directly to Egs. (4) in special
cases, Similarly the definition in Eq. (5) leads directly to Egs. (6).
Proof of Eq. (7) requires the trigonometric identity
coso, = sinfsiny + cosBcosycos(A-1) (29)
which follows from the law of cosines applied to the spherical triangle in

* - . *
Fig. 2.13.1 defined by points B , P, Q, and Q. With Eq. (29) and the lemma

i

Pi(cosa) = Pi(sinB) Pi(siny) + 2 2;& %%Eg%é Pi(sinB) Pi(siny) cosj (A-y)
J (30)
Eq. (2) becomes
P, (sinB) i
c = i T
1 (2,300 @ f (EB") P, (siny) pdt
2 & G-t r\ o -
+ P jg']_ )1 Pi(sinB) cosjA / (-ﬁ;) Pi(sin'y) cosjupdt
i,
+ sinj)\ / (Fg) P?L(siny) sinjupdt (31)

confirming Eqs. (7) - (10).
Eq. (11) is the direct combination of Eqs. (1) and (7).

Eq. (12) follows from Eq. (2), since

* .
W.E. Byerly, An Elementary Treatise on Fourier Series and Spherical,
Cylindrical, and Ellipsoidal Harmonics, Ginn and Co., Boston, 1893, p. 211.
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1 r \2
¢, (;) E/(TR;) Pz(cosa)pdT

- 1
(4c) ZmR]Z3

= __17 /Zrzpd‘r -3 frzsinzapdr]
ZmRB -

r2 (3cosza—l) pdt

1
g L

*
where tr(I) is the trace of the inertia dyadic of B for B and I; is the

tr(I) - 3111]

moment of inertia of B about the line joining B* and P.

Eq. (13) is a special case of Eq. (2), with Eq, (4c) and a pair of
trigonometric identities substituted.

.The physlcal interpretations in Eqs. (14) and (15) are confirmed by compar-
ing gq. (13) with Eqs. (2,12.8) and (2.11.7), noting that

:
v (;—'i) c, 1=2,,..@ (32)
(2.12.1,1)

and équating coefficients of independent trigonometric functions, such as
(3sin28-1) s éOSZBCOSZA, coszﬁsinZX, sin2Bcos), and sin2Bsinl,

Eq. (17) is a special case of Eq. (11) in which the definition in
Eq. (16) has been substituted and due to symmetry all dependence on A has been

eliminated.

Eq. (18) follows from the substitution of v(z) from Eq. (32) into Eq.
(2.12.13).

Eq. (19) is identical to Eq. (2.11.7), since V as expressed in Sec.
2.13 is equivalent to V as defined in Sec. 2.11.

The statement in Eq. (20) that E'also satisfies Laplace's equation was

asserted but not proven in Sec, 2.12. Comparison of Egs. (18) and (13) reveals

that
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2

S 2
V= _GL';E 1 +<-l-l-§-) J}: P%(Sips) (Czjcosj)\+ S, sinj)) (33)

20 h|
so that V may be written as a linear combination of terms such as Vi defined
by Eci’. (21). Thus by superposition Eq. (20) is valid if Vi satisfies Lapiacé"s\
equation.

~ In order to prove that Vi is a particular solution of Laplace's equation
when written in terms of spherical coordinates, note that V?‘V = 0 becomes,
from Eq. (2.9.35),

"1 [ (.2 0v 2, 3%V 3 (. .8V

-R—z [——571( (R -55) + sec B 5—}\-—2- + secf EY (cosB 'é_é'):] =0 (34)
To obtain a general solution by separation of variables, adopt the assumed
solution
V = XRY(BZO) (35)

and multiply by chosB/ (XYZ) to obtain

2 2
- cos”B d 2dX\ cosB _d f dy\ 1472
X R (R dR) TTY @B (°°SB<TB') " TZ 2 (36)

Since the left side of Eq. (36) does not depend on A, neither does the right

side, so that both sides equal the same constant, here called j2. Hence

-‘jl—-g— +3%2 =0 (37
dA
and °
E"—}j-z-ﬁ- & (RZ%) yoosb 4 (cose%) - 5 (38)
Eq: (37) has the solution
Z = A5 cosji + B,sinjA (39)

(7

for arbitrary constants A; and B,.
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Eq. (38) can be divided by coszB and rewritten as

2 ,
1 4 2 dX) 4 1 1 ( dY)
= -4 (pe ) = N 37 (coskzz (40)
X dR ( dr (38) coszﬁ YcosB dB d

The left side of Eq. (40) depends only on R, and the right side only on B;
hence both must be a constant, here designated 1(i+l). Thus
%i(Rz %) = 1(1+DX (41)
(40)

and

2
cozB —jg (cosB g-’-é-) + [1(1+1) - —JT] Y=0 (42)

cos B

Eq. (41) has the solution

x = ar‘+ BZR-(1+1) (43)

1) *
for arbitrary constants A2 and BZ’ as may be confirmed by substitution,
Eq. (42) adopts a more familiar form when written in terms of

y A sinB (44)

#( )5 )& - ()

The resulting equation is

so that

2
d 2y dy 1
— 1-y —] + [i(i+1) - ]Y = 0 (45)
dy [( ) y (1-y?) 1 " (42,48)
or
2 2

(1%) -2y F+ {1<1+1) -l ]Y - o (46)

ay- Y a-y?) ] &5)

Eqs. (42), (45), and (46) are known as associated Legendre equations

of degree i and order j, If the symbol Pi(sinB) is defined to represent a
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particular solution to Eq. (42), then Eq. (34) has-a particular solution

=3 _ j [ 1 - (i+1)
v = PY (sinB) | A.cosjA + B sinj%]{% R™ 4+ B,R
1 (35,39,43) L 1 2 2

which implies a second particular solution
v o= (-]4) i pd (sinB) [A cosil + B sinjA] 47
i R i 3 3
thus proving the contention that V*l as defined by Eq. (21) satisfies
Laplabe's equation, subject to the implied supposition that the function
Pi(sinB) satisfying the associated Legendre equations is ‘the same as the
P:}_(sinﬁ) defined by Eq. (5).
In order to confirm the implied meaning of Pi(sinﬁ), it is convenient

to rewrite Eq. (46) in terms of W, defined by

wp (1737 48)
so that
213/2
v (1) (49)
j j/2-1
[} 4 (1 2)3/2 o (1_ 2) -
dy ~ \"7Y & ~ 3y {1y
and
. i
%y 2)2 a%u 2L aw
L = (1) S -2y 1y &
dy dy
2 2 .
2y 1 4.1
1-
y T
Substituting Eqs. (49) -~ (51) into Eq. (46) and multiplying by (1_y )
yields
(1'3'2) é‘z% - 2y(3+L) % + [i(i+1) - jZ_j] W=0 (52)
dy

‘Eq. (52) is more meaningful when written in terms of L, as defined by
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WA —= (53)

The resulting equation

2
(1-*) S5 1 -2y 1(1+1) - 373 =0 (54
yj+2 yj+1 4 yj :

can be recognized as the jth y~derivative of Legendre's equation of ith
degree,
2 -
(1-y%)9% - 2y %1—‘+ 1(i+l) L = (55)
dy

(Proof requires only j successive differentiatioms of Eq. (55) to produce
Eq. (54)).
If the symbol Pi(y) designates a particular solution of Eq., (55), then
P (y) - 203 o
17 48, 53,55 (17°) o 1 (56)
is a particular solution of Eq. (46). In order to confirm Eq. (5), it is now
necessary first to establish Eq. (3) for Pi(y). To this end, let
o A(y21)t (57)
so that

i-1
%% = 21y (yz-—l)

and

(1-y%) 8 + 2150 = 0

Differentiate once with respect to y to obtain

2
(1-v°) &3 + 29(1-1) $2 + 210 = 0
dy y

and differentiate with respect to y i times more to establish
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. 2 f.i i i
;\ (l_yz)__di G9) gy L (49) s (L2)- 0
dy” \dy Y \dy dy

} - . .
proving that dla/dyi satisfies Legendre's equation, Since Pi(y) has been
identified here simply as a particular solution of Legendre's equation, one

can define Pi(y) as an arbitrary multiple of diu/dyl, and specificaliy let

P A _1 d (yz-l)i
57) 211 ayt

(58)
This result, known as Rodrigues' formula for the Legendre'polynomials, is
usually considered as a propeity of the particular solution Pi(y) satisfying
Legendre's equation, but a systematic evaluation of the derivative in Eq. (58)
confirms the equivalence of this expression and the series developed in

Eq. (3). Substitution of this series into Eq. (56) and repeated differentia-
tion confirms the series expansion for Pi(y) developed in Eq. (5).

Example: In conventional practice Eq. (11) is used in application to
natural celestial bodies for which mass distribution properties are not known
sufficiently well either to calculate Cij and Sij from Eqs. (8) - (iO) or to
use the series for V presented in Sec. 2.12. The alternative is to deduce
values for Cij and Sijv(at least for the lower values of i and j) from
empirical data on gravitational forces on other bodies.

In the case of the earth, for example, measurements of gravitational
forces at the earth's surface and on artifical earth satellites have estab-
lished the approximate values

3

C -1.0827x10"

20

Cpq = S5 = 0 G = 1,2)

when the normalizing quantity RB is given the value of the earth's mean

equatorial radius, here designated b,
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If the earth is assumed to be a homogeneous spheroid, with polar radius

¢, the empirical data can be used to compute the ratio ¢/b. Since

2 2
I1 = 12 = m{b“4+c”) /5
and
2
13 = 2mb“/5
we have
- 2
-1.0827x107° = L [-g-“l (b*+c?) - -425‘3-]
(L4a2) 2mb
= }.(sf. »
5 b2 .
and

c -3 g
T = (1-5%1.0827x10 ©) = 0,9973
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2,14 Force function for two small bodies

When the distance R between the mass centers B* and ﬁ* of two (not
necessarily rig;§) bodies B and B exceeds the greatest distance in either
body’from the mass cenfér to any point of the body, so that the resultant
of the system of gravitational forces exerted on B by B can be approximated

-~
by a force F defined as

FA - 9#-"3'21 (gl + 3 4 ?(2)) @)
EA-T £ £

‘where G is the universal gravitational constant, m and m are the masses of B

- &k 2) . 2(2)
and B, a; is a unit vector directed from B to B, and f and f are given

by Egs. (2.4.2) and (2.4.3), then a force function V such that

$o R

= V.V 2)

where R = Rgl, is given by

7 - 9%9—(1 sv® @) e 3)
with
@ __1 T _ ]
v = ;;;E -tr(l) 3111- )
and
=) __1 [ = _ 2 ]
v = ;;;5 -tr(z) 311;- (5)

where tr(I) and tr (E) are the traces of the inertia dyadics of B for B* and
of B for ﬁ*, while I11 and ill are the moments of iﬁertia of B and of B about
the line connecting B* and E*.

Derivation: Differentiating Eq. (3) with respect to R and then proceed-

ing as in the derivation of Eq. (2.12.13), one arrives at
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~ _ _ Gm L |3 T 7

W=-"Sla+—3]7 |trD - 53,° 1 -2 §+3£'§}

R 2\ 2% L 1 1|5 1
+_1'2'{% tr(D) - 5a;° I-a §1+3.f. ° 51]
mR”™ | L. 1d

and use of Eqs. (2.4.2) and (2.4.3) then gives

YR'V:_EE_'L;_ (§1+£(2)+§(2)) EE
- R (1)
Example: The Example in Section 2.4 deals with an approximation E to t?\e
gravitational force exerted on a rectangular parallelepiped by an oblate

spheroid. To construct a force function ¥ that satisfies Eq. (2), note that

the moments of inertia Ill and ill can be expressed as

2

mol 2 2 2
n =12 [2 -+ (gt b)e ]
Sl PR LY
11°-75 21" 2

while
2 2
tr (1) =%~ 3 - &)
and
- 2m2 -2
tr (£)=—5—"(3—€)

¥ can then be formed by substituting into Eqs. (3) - (5):

~  Gmm uzez 2
Ve M|t )
24R
~2-2
+°‘§ [1-3(a1'b1)2}+c
5R

and it may be verified that differentiation of "7 with respect to R (using

Eqs. (2.9.8) and (2.9.9) leads to E as given by Eqs. (2.4.14), (2.4.26), and
(2.4.29).,
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2,15 Force functions for a centrobaric body

Since for purposes of dealing with gravitational effects a centrobaric
body (see Section 2,5) may be replaced with a particle situated at the mass
center of such a body, force functions suitable for dealing with the gravita-
tional interaction of a centrobaric bbdy and a particle, a centrobaric body énd
any body whatsoever, or a centrobaric body and a remote body can be obtained
directly from Egqs. (2.10.2), (2.11.2), (2.11.5),(2.12.1)(2.13,1) or (2.13.11).

Example: The gravitational force F exerted by an uniform sphere S of

mass M on a dumbell of mass 2m (see Fig. 2.15.1) can be expressed as

F = YBV

with

2 -;5 2 —%
V =  GMm [(3+Lg)] + [(g-Ln) ] +C
(2.12.2) -

where n is a unit vector directed as shown in Fig. 2.15.1.

112






2.16

2,16 Force function for a body and a small body

When the distance between the mass centers B* and ﬁ* of two bodies B and
B exceeds the greatest distance from B* to any point of B, and a force function
V(p) for the force exerted by B on a particle of unit mass at a point P situated
as shown in Fig. 2.16.1 is available, then there exists a function V(R), where
R is;the position vector of B* relative to ﬁ*, such that the resultant of all
g;avitational forces exerted by B on B can be approximated by a force F expressed
as

/ F=WE® @

where the synbol V connotes differentiation with respect to R. The function

~ ;
V(R) is given by

VR = W@ -

o=

! I: TWR +C )

where m is the mass of B, I is the inertia dyadic of B for B, and C is an

|
!

; ; %
| arbitrary constant.

j Derivations: The gravitational force dF exerted by B on a differential
|

g element of B at P can be expressed as
dF = V Vpdt
T (2.11.1) B (3)
where p is the mass density of B at P while dT is the volume of the element.
éonsequently,.the resultant F of all gravitational forces exerted by B on B

is given by

| F= f v Vpdt (4)

*

The double dot product in Eq. (2) is defined such that, for two dyads u 4,
and V1¥5 (glgz): (Ylgz) = (gl'yl)(gz'gz); and it obeys the distributive
law when applied to dyadics:

(§l§2+§1§2+...): (éléi+§1§2+"’) = a;a,: AA, + 253, ¢ BB, + ...

+ 9192: }_&1132 + _1_)1132 H §1]§2 + ooes

eoe
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Figure 2.16.1
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To obtain the desired approximation ?'to F, one can expand V(E) in a
Taylor series about p = R, retaining only terms up to and including those of --
degree three in ]gl, where r A p -~ R (see -Fig. 2.16.1); differentiate with
respect to p; and then carry out the integration indicated in Eq. (4). These
tasks are facilitated by introducing a function W(r) A V(r + R), which permits

one to write

vv = VW (5)
P (2.9.5) "=
and
F = ferpd'r (6)
(4.5) =
If n,, 0,, Oy are any mutually perpendicular unit vectors and_ri Are n,

(i=1,2,3), the Taylor series expansion of W about r = O can be written (using

the summation convention)

. 1 L1
= W) +r; W. 1 + 57 T Fi W + 37 rirjrk W,ijk + . ¢))
where
WoAe | LW gg G (1.3 = 1,2,9) ®
’ i
_ *3
E—O r=0

and so forth., Differentiating with respect to r,, one obtains

oW 1
= 0+ 8 ——-(6 r. +r )
5r2 (7,8) iz 2 1273 i jl ij

1
+ §T'(6i2rjrk + riS ok t rlrJsz) ijk + ..

- l :
= W,Z + riw,il + >, er 158 + cee

Hence,

iR

X

- 1
YEW @30 (yrw) +r (YrYrW) + 5 ( vy w) + ..
tT T Tr=0 r=0 TT 7 "r=0

Substituting into Eq. (6) only the terms here displayed explicitly, and

noting that
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fpd'rm, fgpd'r= 0, fggpd’rﬂ}z-tr (HDU-1I

where U is the unit dyadic, one can now write

¥ = n(7¥)
L =0

+3[3 e @u-1]: (L)

= == "r=0

or, after using Eq. (5),

~ 111
F=(V {mV+-—[—-tr(I) U-I]: VVV}+C
-(-P. zlz === =] “pp =R
=z
where C is an arbitrary constant. Now, differentiating V{p)with respect to p
and then setting p equal to R is precisely the same as differentiating V(R)
with respect to R. Hence, if V connotes differentiation with respect to R,
then
o~ 111 :
F=y ow@® +3|3tr @U-I|: W@ +c
Now
U YR = TR = PVR = 0
(2.11.7)
Thus Eq. (1) follows immediately if Eq. (2) is used to form ’\7(1_5).
Example: When V(R) is available in the form of an explicit function
*
V (R,A,B) of the spherical coordinates R,A,B shown in Fig. 2.16.2, where o,
n,,n, are any mutually perpendicular unit vectors, one can formulate i as follows:

Let 25 255 25 be mutually perpendicular unit vectors directed as shown in

Fig. 2.16.2, Define I.‘lk as
Ijk A ej *I- a8, 3,k = 1,2,3) (9
- ~5
and form Qy (1 =1,2,3) and V (R,A,B) as
A 3%v"

Q; J
3R

(10)
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Figure 2.16.2
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2 2 % e
sz A1y 4+ B8ec B3V _ tanB 3V (11)
R 9R R?; SAZ R2 98
Qua A 1 3V . 1 3%
338 + (12)
R W "2 552
and
~ * 1
V (R,A,8) AV -5 (111Q11 + I59Q), * I33":33) + e (13)
Then
~iR o~
~ ov secf 9V 1 9V
E=2 5 *2 1 vt R s

For the derivation of Eq., (14), it is helpful to note that, since the
indicated partial differentiation is referred to the reference frame in which

0;,0,,04 in Fig. 2.16.2 are fixed,

%3; 9a; 23 0 cBay 23
- ) U T
da da da
=p) 8, 98|
58 % 3p |~ |0 ~cBaytsBay 0 (15)
353 3§3 8§3 0 8 )
3R 3\ OB shda 2
— o s camd

Also, proceeding as in the Example in Sec. 2.9, one can verify that, if

V(R) = V'(R,A,B), then

* %
- v secf 9V 19V
YWWR =25 +23,F 3 *23K798 (16)

Differentiating once more with respect to R and using Eq. (15) one then

finds that
YIVR) = Qa1 + Qpp252, * Q332333 + -+ a7

where Q1s Qo Q4 are given by Egqs. (4)~(6) while the dots represent all
terms involving the dyads 2,8, with i # j. Similarly, the inertia dyadic I can

be expressed as
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fi

(gy 112181 F T2222p * T332523 + oo (18)

Hence,

I: WR = 1,,Q,4 +1,,Q,, +1,.Q
(17,18) 11711 22722 33733

g
With V' in place of V(R), one thus obtains from Eq. (2)
~ * 1
VR) =V - 5 (15,0 + IpjQp, + Ijp0y5) + C

~
Moreover, defining V (R,A,B) as the right-hand member of this equations, which

yields Eq. (13), one can write [compare with Eq. (16)]

/
/

Substitution into Eq. (1) then produces Eq. (14).
y;

i

~ W B AV L
sec
VR =2 s~ +3, 5 - ta33n
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2,17 Force function expressions for moment exerted on a body by a particle

Force functions (see Secs, 2.10 - 2,16) can be used also in connection
with gravitational moments. For the interaction of a particle and a (not
necessarily rigid) body, ﬁhe moment M given by Eq. (2.6,1) can be expressed as

M = <R X WV @
where V(R) is given by Eq. (2.11.2) or by Eq. (2.11.5) and VV is the deriva-
;ive of V with respect to R; or, if W is defined as W(gl,R) é-v[g(gl,R)], M is
given also by

~ oW
M= -a; X Egi (2)

Similarly, forlﬁyas defined in Eq. (2.6.3), one can write

o~ o~
M=-R XV 3)

where V is given by Eq. (2.12.13); or ﬁ can be expressed as
M=-a x 2t (4)

where ﬁ'is a function of a; and R defined in terms of the moment of inertia I11

: - *

of B about the line connecting P and B as
~ 3GmI
W=Q _ 11

2R3

+ C

Derivations: Eq. (1) is obtained by substituting from Eq. (2.11.1) into
Eq. (2.6.1); and Eq. (2) then follows if one uses Eq. (2.9.12).

Referring to Eqs. (2.3.6) and (2.3.3), one can write

[and
M

= a, X1 e+ a =
L= g3 1 b 6.9)

and, replacing R 2, with R, one then arrives at Eq. (3) after using Eq.

(2.12.12) to eliminate E:
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1f ﬁ is defined as

%( R) V[R(al,R)]

then
R [tr(_I_)—BIll] +C
(2.12.13) 2mR
and
R X ZV' = a; X %g
: (2.9.12) =1
|
b 3 Gmm '
< 1+ ——-—2 [tr(_1_)~3111] + c>
2mR
or, since tr (I) is independent of ar,
- 36GmI ard
BXY =21x82 - 311+C =_a_1><-%§
=1 2R (5) -1
Consequently
~ oW
M = a T
= 3) =1 agl

in agreement with Eq. (4).

Example, in Fig. 2.17.1, 215 395 24 and b 2, b3 are dextral sets of’
orthogonal unit vectors, P is a particle of mass m, and B is a rigid body of
mass m, The unit vector 2, is chosen such that the position vector R of the
mass center B* of B relative to P is given by R = 1, and b 2, b3 are
fixed in B.

If 61, 92, 93 are body-two orientation angles (see Sec. 1.7) for B in

a reference frame in which 2y 8,5 34 are fixed, one can express R as

R(R,9,,6,.6,) = R(c,b, + s,8.b, + 8 2 b ) (6)
1°72°73 (1.7.31) 2=-1 273=2 3-3

Given a force function V(B) for the gravitational interaction of P and B, one

can, therefore, define a function W(R,el, 62, 63) as
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Figure 2.172.1
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W(Raelsezse3) é V[B(Ra 62963) ]

- *
The moment M exerted by P on B about B can then be expressed in terms of

7y

partial derivatives of W with respect to 62 and 63 by proceeding as follows:

Partial differentiation of R with reSpéct to R,92, and 93 yields

w

3R . .

R Pl ey + 8383hy "' 32‘%3?3

R

ﬁz (Z) R(-spby + ¢ 2932 ¥ €232 by).

R

3%3 ® R(sye3by - 8783b3)

From Eq. (2.9.5)

oW oR

A P R I S RARE M
3R

9%’-2-=yv,- %, (;)R(‘szw "hytes Wnh
3R

%2’—3=‘zv '975‘3 a0 R(syeg WV * By = 885 WV * by)

bs

@)

9

(10)

(13)

Eqs. (11)-(13) may be solved for the dot-products of VV with‘yl, by, bg; and

VV can then be expressed as

VW= - bib, + WV ¢

-Law
ER ©2°R3%

’Z’E

;———\
”Is

byb, + YV

bsbg

32)91
R 39 R 393 S,y =2
1w ;._a_w__sa)b
362 23 R 93 8,/ "
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Consequently
aw oW aw c25’3)
M = -RxW = b- , b
@ - T (6,14 ° (5 37738, s, | =2
ow ©2°3 . ow ) ’
-{s —=+z—s.] D (15) .
(ae3 s, = 38, °3) =3

ThiaVequation does nbt involve 61 explicifiy; but, referred to a,,a,,3,, rather

than to b »b b3, M is given by'{use'(l;l7.3l)].

vl S1ow) oW 1w\
E‘(cla—e;*;;se—;)éz*(lae ?7;)

“which brings the dependence of_§ on 6, into evidence.
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2,18 Force function expressions for moment exerted on a body by a body

If V is the force function for a body B and a particle P of unit mass,
wa ¥
then the moment exerted by a body B on B about its mass center B is given by
w - - [ F x vy w
B =
where, as in Fig., 2.7.1, P is a generic point of B, R is the vector from P
k. - -
to B , p is the mass density of B and dT is a differential element of volume
of B.
% —k -
When the distance R between the mass centers B and B of B and B is

large relative to the largest dimensions of B, then M can be approximated by

=3
8 R

a,XIea
géa 3GJ/‘ _1_:__£ adf

in which R and él are defined by g = R é , as in Fig. 2.7.1\

1

When R is large relative to the dimensions of both B and B, M can be
approximated by Egs. (2.17.3) or Eqs. (2.17.4) and (2.17.5) with V from Eqs.
(2.12.13), where now R, R, and a; are to be interpreted as indicated in Fig,
2,7.1, Ill is the moment of inertia of B about the line joining §* and B*,
and m is the mass of B,
Derivationss

Eq. (1) follows from the definition of a moment about B* and the identi~-
fication of yﬁv pdT as the force exerted on B by the differential element of
mass at P.

As shown in Egqs. (2.12,1) and (2.12.2), the force function for B and an’
element of unit mass at P can be written as

v=?{l'+_zm_}?["®'3§1'5"51]*;%3 V(i)§ 3
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where v(i) represents terms of ith degree in the ratio |r|/R (see Fig. 2.7.1).

Differentiation yields

v = - -(_;% a,jl + ——1-_—2- [tr(’._[_)- 33, + L §l] + L WD
= (2.10.7) R 2mR ’ i=3
(2.10.6)

a
- Gm | =1 _ AT . . =
= =3 [tr(£> 3z, - I é%]+
= o (@)
+ 2 Vev
i=3 B )

Substitution of Eq. (4) into Eq. (1) leads to

a,xXIlea 'gm'
g=3cf:l§§:ladf+cmf§1x52:yﬁv(i) pat (5)
B B i=3 -

which justifies the approximation in Eq. (2) when body B is small in dimension

relative to R.

Beginning with Eq. (2), one can when B is also of small dimension

relative to R introduce the approximations
R=RA +...) (6)
ay =a +... 7
where three dots represent terms of first degree or higher in the ratio

|r]/R (see Fig. 2.7.1). By substituting Eqs. (6) and (7) into Eq. (2), and

using the definition

ad f 5T ®)

one can confirm the applicability of Eq. (2.7.2), with a, now interpreted
as in Fig. 2.7.1; Eq. (2.7.2) has been shown in Section 2,17 to be equivalent

to Eqs. (2.17.3) and to the combination of Eqs. (2.17.4) and (2.17.5).
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Example

Fig. 2.4.2 in Section 2.4 portrays a homogeneous oblate spheroid B and
a homogeneous rectangular parallelepiped B, wigh the mass centers §* and B* of
B and B respectively separated by a distance R that substantially exceeds the

maximum dimensions of B and B,

- L *
The moment exerted by B on B about B 1is approximated by

M = -RXYVV (9
(2017.3) -

where

v =
(2.12.13)

cmm §, . 1
R ‘1 + szZ [tr(l) - 331- I- gl] g (10)

As implied by the Example of Section 2.14, Eq. (10) produces

.~ 2.2 |
V= G:? 1+ 52 [} - 3(a1°b1)2] +C Qay
24R Bl

[{This result should be contrasted with V as it actually appears in the Example

of Section 2.14{ the same distinction exists between the V of Eq. (2.12.13) and
the V of Eq. (2.14.3)].

Differentiation of Eq. (11) provides

= 221,
Y Gmm O € 1 2
V.V =‘-~-—-a+..__.—(1-30)a +CCa+cca] (12)
R (11,2.9.8, 2|1 4n? [2 11) 21+ ©21%1322 + ©3:%1123
2.9.9)

as indicated by the Examples in Sections 2.14 and 2.4.

Substitution and cross multiplication produce

~ - 22
M = Cumo ¢y (C21§3 - 03152) (13)
(9,12)" 3

This result should be identical to Eq. (2.7.6) in the Example of
Section 2.7. To reconcile these two expressions for M, ome must recognize

the identities
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(11 - 12)( mo2e?/12 (14)

and
C13B2 = CypB3 = €33 = Cy2y - @3
The validity of Eq. (15) follows from the expressions
83 = C312) + C3oBp + C3304 (16
25 = CpBy * Cppbp + Cp3hy an

and the equality of an element of the direction cosine matrix with its

cofactor, both of which are established in Section 1,2,
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2.19 Force function expression for the moment exerted on a small body by a

body

When the distance between the mass centers B* and ﬁ* of two bodies B
and B exceeds the greatest distance from B* to any point of B, and a force
function V(E) for the forces exerted by Bona particle of unit mass at a
point P situated as shown in Fig. 2.16.1 is available, then the system of
gravitational forces exerted by B on B produces a moment about B* that is
given approximately by

H=-1x7W® &)

* *
where I is the inertia dyadic of B for B , R is the position vector of B
.t.

=%
relative to B , and V connotes differentiation with respect to R.
Derivation: The system of gravitational forces exerted by BonB

*
produces a moment M about B such that

M= f r x ¥ vedr 2)

Expanding YPV in a Taylor series as in Sec. 2,16 following Eq. (2.16.4), one
can shoy that

v.r = VW(R) + r ¢ VWV(R) + ...

so that, retaining only terms displayed explicitly, one arrives at
Be frx @ oo+ frx [z @]
&) | .
The first integral vanishes because r originates at the mass center of B ;
and
rx [£ . YYV(IP] =rz VR

The cross-dot product in Eq. (1) is defined such that, for two dyads

' A . v.)s
Uy, and V1¥ss (2132) X (2122) -"(Elle)(gz 22), and it obeys the dis-
tributive law when applied to dyadics:

(2)35%bybote o0 )X (418,48, Byt. o) = aj3,%A A 48, 8,08, Bote ..

+ bybyXA Ay+h; byXB, Byt

+ eso
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Hence

LR ( f rr odt) X WV (R) = {_%: tr(QH*E.] X WV(R)

But VVV(R) is a symmetric dyadic, and the cross—dot product of U and any
symmetric dyadic is equal to zero. What remains is Eq. (1).

Exaﬁgle: When V(g)’is available in the form of an explicit function V*(R,A,B)
of the spherical coordinates R,\,B shown in Fig. 2.16.2, one can find‘E as
follows:

Differentiate Eq. (2,16.16) to verify that

VWV(R) = )3: Q 242

i=1 —-..

where Q15 Q9s and Qg are given in Eqs. (2.16.10 - 2,16,12) and

*.
- A O (L3V
Qup = Qg = sec B g (ﬁ ) )
Al D av*
Q3= 2" 778 (%ec B'5T;)

Next, let

fie>

k- 25 I -3 (3,k=1,2,3)

Then
M (1)[ 1291 ~ Qalsp T TppT39)Q5 = Q7330155 8y

* [123Q12 " Q3T1p * (T337T39)05; = Q337010752

+ [131Q23 = Qg5+ (57155005 = Q- Q22)112 24
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2,20 Gravitational potential energy

In the context of Lagrangian ot Hamiltonian mechanics, the phrase:
*
“potential energy" refers to a function of the generalized coordinates 4,

(r=1,...,n) of a system;S‘(in en inertial reference frame A) such;that‘
F = - —a""' (r=l,ooo,‘n) . s (1) ’

where F £ the generalized force corresponding to 9 is defined in terms of
Ry» the position vector of a typical particle Pi of S relative to a point fixed

in A, and Fi’ the resultant of all _contact and body forces acting on Pi’ as ;

dp vv
Z i - F, (r=1,...,n) ,m

Here N is the number of particiee\ano the partial differentiatione’are ;erfofmed
in reference frame A. In some situations, ® is simply the negative of one . of
the force functions discussed in Secs. 2,10 - 2.19, For example, this is the
case when S consists of a single particle P of mass'm moving under the action .

of the gravitational force exerted by a particle P of mass m fixed in A. Q 18"

then given by

® = - (Gﬁmp-l

+0) Y
where G, p, and C have precisely the.eame meaning as in Eq. (2;10;2). >Eq. ’
(3) also furnishes the potential‘energy when S oonsists of two pafticlee ﬁ§v=ﬁ
ing under the action of their nutualyg:avitational attraction, In other
situations, ¢ cannot be found so simnly,‘but some of the force functioneyofll
Secs. 2.10-2.14 are, neverthelees,.useful, for they provide contributions

to ¢, For example, if S consists of a rigid body B of mass m and two particles

Pl and P,, of masses my and m,, respectively, and if these three objects move

* ’ ‘
~ The symbol ¢ is used for potential energy rather than the more familiar V,
to avoid confusion with the use of V for the force function in Secs. 2,10-2,19.
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under the action of forces of mutual gravitational attraction, then ¢ can be
expressed as

¢ = -(¢0+¢1+¢2) )
with [see Eq. (2.10.2)]

1

¢, = 6mm,p ~ + C_ (s)
and [see Eq. (2.11.5)] .

., = Gm -1 pdt + C (1=1,2) (6)

i 1) Py el .

where P, i8 the distance between Pl" and *Pz, Py is the distance from P 4 to

a generic point P of B, p is the mass density of B at P, and Co, Cl and C2 are
arbitrary constants,

* Force functions 'associated with épﬁfdximations to gravitational forces
and moments can at times be‘used in tfxe formulation of a potential energy °H
but At can oceur that'appa_r'en,tly relevant force functions exist when & does

not exist., For example, let S consist of a rigid body B of mass m moving under

the action of graﬁitational forces exerted by a pari:icle P of mass m fixed in

A, and suppose that the resultant gravitational force F exerted on B by P is
épproximated with E as defined in Eq. (2.3.6), while the momenf M about the
mass center B" of B of all forces exerted on B by P is approximated with f{: as
defined in Eq. (2.6.3). Then the ’p'o"tenéki»al enérgy ® of S can be expressed as
P o ))
with ¥ given by Eq. (2.12.13); but if g‘; is approximated with ﬁ as defined in
Eq. (2.3.5), while M is approximated with .l:'l',' then (as shown for a specific
;:éée in the Example follbwing) thére exists no function ¢ that satisfies Eq.
(1); deséite the fact that force functions fo?f and”'lz do exist in the sense

A
that F and 'b:f can be expressed as
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>
L
1<
<

. ®)

and

M= R x Ty, (9)

% =
where R is the position vector of B relative to P while
v, = iR (10)
and

v, = Gﬁmnflv(z) (11)

with v(z) as given in Eq. (2.12.2), (The non-existence of a potential energy
under these cixcumstances may be an inconvenience, but it does not render the
approximations under consideration invalid. They are, in fact, particular;y
useful, and are, therefore, employed extensively, in the analysis of motioms
of spaceyvehicles).

Derivations: The resultant of all contact and body forces acting on a
single particle P of mass m moving under the action of the gravitational force

exerted by a particle P of mass m is given by

F = =Gmmp(p“)~

d (12)
(2.1.1) -

Consequently
9 _ 9 2 -3/2
1‘- W.F = .-Gms.—op(p)
(2) (12) @ ==
-1/2
2 mm— B mm— (3]
5, [ im (p™) ] 3q, CmOP
=-§®—
(3) %%

which shows that ¢ as given in Eq. (3) is the potential energy of a system S

consisting solely of P. Similarly, if S consists of both P and P, the
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resultants F and E of the forces acting on P and on P are given by

} 57 -3/2
F 2L ~Cam (21"22)[(21"22)»] a3
and by
F - -F a4
(2.1.2)

where P and p, are respectively the position vectors of P and P relative

to a point fixed in A; and
< . I (?_‘13‘2),,
@ 9, = 8¢, = (14)\%% %q./ =
s ) 2 ~-3/2
=[5'€;(21‘Ez)] "I 1y [—5—2: (?.1'22)]' (E“_’)[(Bl‘EZ) ]
or, since 21-22 = Py

ap -3/2

- "2 2 . =]

Fr*“-Gmgc'l—'P(p) =-3%-(Gmm1> )’
r ~° r 3

so that 9 as given in Eq. (3) is once again the potential energy of S.

_ 20
qu

When S consists of a rigid body B of mass m and two particles, P1 and

P2, of masses my and m,, the resultants El and EZ of all contact and body forces

acting on P1 and P2 are respectively [see Eqs. (2.1.1), (2.1.2),(2.2.2)]

- 2\~3/2 2, -3/2
F, = ~ompmy p(p5) " + oy f 21(p1) pdt 13
and
_ 2\~3/2 f 2\-3/2
F, = Gmm, Bo(go) + Gm, Py (22) pdt (16)
where P, is the position vector of ml,relat;ve to m,, and Py and p, are the
position vectors of a generic point P of B relative to P1 and P2 as shown in

Fig. 2.20,1. The contribution to Fr of forces acting on P1 and P2 is given

by [see Fig. 2.20.1 for R, and R,, and use Eq. )].
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Figure 2.20.1
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3k R dp -3/2
=1 =2 0 2
[ g ] E = « G M, x==— * P P
qu 1 qu 2 (15,16) 172 aqr -0 (_o)
9R \~=3/2
-1 2
+ ey f 3q, n(p}) et
9R -3/2
=2 2
T 5 pey)  ear an

M fo:l‘ f;)‘rces‘acting on the particles of B, these either are forces exerted

by P1 and Pz,;or they are forces exerted by particles of B on each other,
S:lpce'B: is a rigid body, the latter forces make no coﬁﬁriﬁution to Fr (see Kane,
l_)y_li_a;i_g_g_, Holt, Rinehart and Winston, p. 8l), and a typical force of the former

kind can be éxpressed as

| 4\-3/2 , =327
% oIy ‘G[“‘lh(l’l) * “2.‘.’2(?2) ! ] pdt (18)

Thé contribution of this force to Fr is thus given by [see Pig., 2.20.1 for p,

and use Eq. (2)]

r (18)
oR 3/2 op -3/2
=1 2 =1 2
-G[ml o El( 1) + 15;; * Py (pl) ]Dd'r
oR ~-3/2 op 3/2
=2 2 £2 2
-G[m2 ajq-— * Py (22) +m, T . 22(22) pdt
T T (19)

and F_ can now be formulated as
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351 Bgz ap
= s B, + ==+ F, + » dF
2) 9q 1 qu =2 qu =
9p -3/2
= ~Gm.m, =2
(17,19) 12 8 Po\Po

~3/2 ap 3/2

P2 2y
Gm f 3q . pl(pl) pdt -~ sz 3.91- 22(22) pdt
X g\-1/2 o712 \~1/2 ]
= 3q, [Gml“‘z(?o) + 6my _/ (21) pdt + Gu, f (32> pdt

20)
or, with
& (g?) 4 = 0,1,2)

as ,
a'[ -1, f -1 -1
F = <—|Gmm, p~ + Gm P pd1:+Gmfp pd'r]
r(ZO) qu 172 % 1 1 2 2
9 a0
? +0 +<1>) L
(5 6) Bq ( o 1 2 %) qu
Hence, ¢ as given by Eq. (4) is the potential energy of S.

To form the generalized force associated with the force system presumed
to be acting on a rigid body B in connection with Eq. (17), one can begin by
expressing F.as (see Kane, Dynamics, Holt, Rinehart and Winston, p. 81)

T Egg (Rey) +¥ g @D
where R and a, are defined as in Sec. 2,13, while w, the angular velocity of
B in reference frame A, is regarded as a function of qr'and dr (r=1,...,n)..

Using Eqs. (2.3.6) and (2.6.3), one thus obtains

_ - Gm () , .3 3cm . w
F_= 2(_1+£ ) §-q—-(Ra>+—-E( XIa) '3-&-‘ (22)

T(21) =R A g2 \"1 =71 r

or, equivalently,
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r r
. W .
+ 32 T:-xi\)o (_1_.21) (23)
R qr
Now,
da
9 aR =1
-——Ra>==--:—a + R (24)
3qr( - qu 21 qu

and, using a superscript B to denote differentiation in B, one can write

da B da ow

1 21 -
5q, - 3a_ T34 A (25)
so that
(ag 93, ® 2a,
—— X g . (I e 3 ) = — ® .]; ° 2 - —— @ ;[- ° é
qu -1 -~ =1 (25) 3qr 1 aqr 1 (26)

or, since I is independent of q_ (r=1 ,..., n) in B,

Tt

(8@ ) Bgl 1 By
= Xa, Je(I°*a,) = 5—° *a, ~55—{(a; °L°a
qu -1 (— -l)(26) oq =1 2 qu (-l ~ -l)

=—-—o]'_na_.];
aqr = =1 23q

(27)
r

*
where I11 is the moment of inertia of B agbout the line passing through B
and parallel to 3. Substituting from Eqs. (24) and (27) into Eq. (23), one

thus arrives at

- da da
R AL R U= RE U L B £(2’] (28)
R qr qr qr qr
- [ 9da I
cm| -1 19711
+ 22 == 1. a -2 (28)
R3 (aqr 1 23qr>

The vector 3§1/3qr is necessarily perpendicular to a;. Consequently the

dot-product of this vector with 2, vanishes, Expressing E(Z) as in Eq. (2.3.3),
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one can thus rewrite Eq. (28) as

- L . I
Fo=- G__;n_-%_’c}g - 3-3- %—9-15— [tr(I)—3111]+ g il
R aqr 2R 9 9
. &
9q
(2.12.2) °

which shows that ¢ as given in Eq. (7) is the potential energy in question.

Example: Fig. 2.20.2 shows a thin rod B of mass m and a particle P of
mass m, the same system previously considered in the Examples in Sec., 2.3 and
2,11, If B is constrained to remain in a plane fixed in an inertial refer-
ence frame A, and if P is fixed in this plane, then the position and orientation
of B in A can be described in terms of the generalized coordinétes 9 = o,

q, = R, and q3 = Y. Suppose now that F, the resultant force exerted by P on B,

is approximated as

~ - 2
FxF = - 9.’35;.[31 + —L'—z- (2—-3 sinzlp) a, - !‘—-2- sin2y 32] (29)
R°|™ &R 8R -
(2.3.6)

* -
while M, the moment about B of the forces exerted on B by P, is approximated

with
M~ M = - Gmg (sinzq; 53) (30)
(2.6.3) B8R

Then the generalized forces corresponding to O,R,) are

Fe = 0 31
Gmm L 2
F.o 2 o ~—= 11 + == [2-3 gin w ] (32)
R r? [ 8R% ( )
poo Gl (33
VT T2 i )
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Figure 2.20.2
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fad
and, if ¢ is taken to be the negative of the function V found in the Example

in Sec. 2,11, that is,
2
__cim[1+-2 (2-3 s1a%)]- ¢
b =~ e 2
R 24R
Then, as may be verified by carrying out the indicated differentiations,

3¢ 3¢ 99

=_§§’F

F, = P = - sm' (34)

6=~ %0 Fr

But, if instead of approximating F as in Eq. (29) one uses

AN o
F o Feoofm, (35)
- - R2 -1

while continuing to approximate M as in Eq. (30), then the generalized

forces become

and there exists no function ¢ of 6, R and ¥ such that Eqs. (34) are satisfied
simultaneously, Finally, if additional constraints are introduced so as to
force B* to move with a- prescribed velocity, which can be accomplished by
applying suitable contact forces at B*, then 9 and R cease to be geﬁeralized
coordinates; Fw, the generalized force for what is now a one-degree-~of-freedom
system, is given by Eq. (33), both when F is approximated as in Eq. (29) and
when Eq. (35) is used; and a potential energy & thus exists in both cases
because FW can be expressed as Fw = - 30/9y if one lets

= _2

® = GmmL
T 2
16R

cos2y + C

*U,5, GOVERNMENT PRINTING OFFICE: 1975 « 635-275/37
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